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Abstract

For the past half-century since the advent of modern cryptography, perhaps most dis-

tinctly demarcated by Diffie and Hellman in 1976, dramatic advances in cryptographic

theory and practice have propelled us from a world where secrets were best hidden by

obfuscation and hope to one where private, authenticated communication is the almost

invisible backdrop of all electronic communication and where advanced cryptosystems

secure previously unimaginable functionalities such as privacy-preserving computation

and even novel digital financial systems.

One connecting thread in this history is that cryptographic constructions and

cryptanalysis have largely been done by, and for, cryptographers. This is perhaps most

clearly evidenced in the folklore maxim that almost every computer scientist hears

at some point: “don’t roll your own crypto.” Recent efforts to promote usability and

transparency in cryptography are poignantly summarized in seminal critiques of the

complexity and opaqueness of cryptographic tools.

The lack of accessibility in both building and evaluating cryptosystems is far worse

than just an inconvenience of consulting experts. As Rogaway famously described,

cryptography is a mechanism of power – the power to control the flow of information,

to protect data sensitive to us, and to interact with modern technology systems. Thus,

accessibility is a matter of equity as much as it is one of efficiency. When viewed

through this lens, the lack of accessibility to cryptography expertise can be clearly
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understood as a problem at the intersection of the societal and the technical.

Throughout this work, we explore opportunities to leverage automation, familiar

tools, and commodity platforms to develop novel cryptographic methods. In doing

so, we seek to democratize access to cryptography knowledge, implementation, and

evaluation. Technology alone cannot be expected to solve societal problems. However,

only by including considerations of accessibility and usability into our development of

novel methods can we hope to pursue efforts which serve to mitigate the impacts of

these societal challenges.

Primary Reader and Advisor: Matthew D. Green

Secondary Readers: Yinzhi Cao, Michael Rushanan
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Chapter 1

Introduction

For the past half-century since the advent of modern cryptography, perhaps most dis-

tinctly demarcated by Diffie and Hellman in 1976 [DH76], dramatic advances in cryp-

tographic theory and practice have propelled us from a world where secrets were best

hidden by obfuscation [Sma16] and hope [BB02] to one where private, authenticated

communication is the almost invisible backdrop of all electronic communication [Tur14]

and where advanced cryptosystems secure previously unimaginable functionalities

such as privacy-preserving computation [Yao82; Yao86a; BOGW88; Gen09] and even

novel digital financial systems [Nak08; But+13].

One connecting thread in this history is that cryptographic constructions and

cryptanalysis have largely been done by, and for, cryptographers. This is perhaps most

clearly evidenced in the folklore maxim that almost every computer scientist hears

at some point: “don’t roll your own crypto.” Recent efforts to promote usability and

transparency in cryptography (surveyed in works such as [Swe+09]) are poignantly

summarized in seminal critiques of the complexity and opaqueness of cryptographic

tools such as the comical yet vital work “Why Johnny Can’t Encrypt” and others that

have followed [WT99; Ruo+15].

The lack of accessibility in both building and evaluating cryptosystems is far
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CHAPTER 1. INTRODUCTION

worse than just an inconvenience of consulting experts. As Rogaway famously de-

scribed [Rog15], cryptography is a mechanism of power – the power to control the flow

of information, to protect data sensitive to us, and to interact with modern technology

systems. Thus, accessibility is a matter of equity as much as it is one of efficiency.

When viewed through this lens, the lack of accessibility to cryptography expertise can

be clearly understood as a problem at the intersection of the societal and the technical.

Throughout this work, we explore opportunities to leverage automation, familiar

tools, and commodity platforms to develop novel cryptographic methods. In doing

so, we seek to democratize access to cryptography knowledge, implementation, and

evaluation. Technology alone cannot be expected to solve societal problems. However,

only by including considerations of accessibility and usability into our development of

novel methods can we hope to pursue efforts which serve to mitigate the impacts of

these societal challenges.

The state of the art. A variety of works exist in the research literature on the

intersection of usability, in the form of automation or at least tooling, and security for

cryptography and cryptographic systems. We consider a wide range of modern related

works throughout these chapters, ranging from concrete instantiations of attacks seek

to optimize and automate, to tools that exist largely within the theoretical realm or

which incur extensive time- or resource-based costs to be effective. The unifying theme

across these works is that even the cutting edge of cryptography discoveries limits its

valuation of practical implementations and pragmatic usage trade-offs. In many cases,

implementations are described or even directly provided in the form of functioning

software. However, these implementations are often designed for expert use, or require

at least some relevant domain knowledge in order to operate them successfully or

securely. As a result, there is some extant gap, a barrier between what we know we

2



CHAPTER 1. INTRODUCTION

can accomplish with technology and cryptography, and the realities of the systems

accessible to end-users.

Our approaches. We approach this problem through a humanistic lens, analyzing

impact and context of various advancements in cryptography. Our goal is to provide

contributions that empower end users or practitioners without requiring domain exper-

tise in cryptography. By providing expressive domain-specific languages, we empower

practitioners to access cryptography through familiar interfaces; using powerful and

flexible solving tools such as SAT and SMT, we expand the range of concrete problems

which our tools can provide direct answers for; and in the constructive case, we design

systems and protocols to operate on common commodity devices such as smartphones

and home IoT devices. Whether in uncovering new methods of attack or evaluation of

purportedly secure encryption or computation schemes, or in applying those methods

and developing new defenses to solve practical challenges facing individual users of

cryptographic tools, the underlying goal and resulting character of our contributions

is centered on improving the accessibility of modern cryptography and the extent of

capabilities available to its users.

Our contributions. In this work we describe a number of practical and theoretical

contributions to the research literature, in addition to software implementations of

our tools and systems along with rigorous accompanying evaluations of their perfor-

mance and security. We describe a novel method of discovering chosen-ciphertext

attacks [Bel96; NY90; BN00] by instantiating recently-developed methods in SAT solv-

ing [FRS17] with novel, enabling heuristics which bridge the gap between theoretical

correctness and practical feasibility. We then advance this method, generalizing and

dramatically expanding its efficiency and applicability to an expanse of cryptographic
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analyses, and realize novel methods in quantifying information leakage with the ac-

companying, practically-motivated capability to concretely generate leakage-driven

attacks. Finally, we contribute a novel system and protocol, resilient by design to the

attacks we describe in prior chapters, to demonstrate the constructive use of accessible

cryptography and “close the loop” between uncovering new attacks and designing new

defenses.

Outline of this work. In the remainder of Chapter 1, we provide broad background

information in the form of technical preliminaries. In Chapter 2, we describe Del-

phinium, our approach to automating chosen ciphertext attacks. In Chapter 3, we

describe McFIL, our approach to automating generalized information leakage attacks,

building off of the foundation of Delphinium, and applying these capabilities to secure

multi-party computation, fully homomorphic encryption, and zero-knowledge proofs.

Then, in Chapter 4, we provide SocIoTy, a novel framework enabled by secure multi-

party computation to provide novel cryptographic capabilities to end-users. Finally, in

Chapter 5, we provide summary discussion and review the open problems established

throughout the course of this work.

Previous publications. Portions of this work have previously been published in other

venues. Chapters 2 and 3 consist of material which appeared in the Proceedings of

Usenix Security 2018 and 2023, respectively. Similarly, Chapter 4 consists of work that

was originally published in the Proceedings on Privacy Enhancing Technologies 2024.

We will provide direct citations at the start of each chapter.

Preliminaries

In this section we provide a number of definitions and descriptions to guide the reader

throughout this work. In the spirit of accessibility and usability in cryptography which
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underpins this work, for the purely cryptographic definitions we elide the rigid and

more opaque formalized definitions for more clearly intuitive descriptions.

Symmetric encryption. A symmetric encryption scheme consists of three algorithms,

usually Enc, Dec, and Keygen, which respectively encipher (hide) a message given a

cryptographic key (derived from secret randomness), return enciphered messages

to their original plaintext given the same key, and generate keys from some source

(pseudo)randomness. The defining characteristic of symmetric encryption is that the

key used to encrypt is the same as the key used to decrypt, and therefore must generally

be transmitted securely outside of the scheme, such as with a physical hand-off or key

agreement protocols such as Diffie-Hellman key exchange [Mer78].

Asymmetric encryption. Similarly, asymmetric encryption consists of the same

three algorithms, but with the defining characteristic that the key used to encrypt (the

“public” key) and the key used to decrypt (the “private” key) are different. Indeed, as

their names might imply, the public key is generally shared widely, enabling anyone

to encrypt messages to a given recipient. The private key, correspondingly, must be

kept private as it allows the recipient to decrypt those messages. In some descriptions,

Keygen may only generate a private key, and some other associated algorithm generates

a public key from the private key, either deterministically or with randomization if

given (pseudo)random input(s).

Asymmetric authentication. Asymmetric authentication can be understood as a sort

of converse to asymmetric encryption. The private key is used to generate a “signature”

given a message (and usually some (pseudo)randomness) using Sign. This signature,

along with the message and the corresponding public key, can be provided to Verify,

which outputs (in effect) accept or reject if the signature data was correctly generated

using the corresponding private key.
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Hash functions. Cryptographic hash functions are algorithms which take arbitrary

inputs (e.g. byte strings of any length) and output fixed-length “hashes.” These outputs

can be used as a kind of “fingerprint” for the input, in that any given input will

with high probability output a unique hash. However, as defined, these functions

cannot exist; infinite inputs mapping to a finite (even if very large) number of outputs

necessitates the existence of inputs which map to the same output (a “collision”).

However, hash functions rely on these collisions to be computationally infeasible to

find. Cryptographic hash functions satisfy the following related properties: one-way

(or “pre-image resistance”), second pre-image resistance, and collision-resistance. The

first implies that given a hash function output, a computationally-bound adversary will

with vanishing probability discover a corresponding input for that output. The second

requires that given an input and its corresponding output, a computationally-bound

adversary will with vanishing probability find a second input which has the same hash

output. Finally, the third property requires that a computationally-bound adversary

will with only vanishing probability find two inputs which hash to the same output.

Chosen plaintext attacks. One class of attacks against encryption schemes is the

“chosen plaintext attack.” In these attacks, an adversary is able to receive encryptions

of any plaintext message they choose (adaptively, in some models, meaning that further

plaintexts can be chosen after seeing encryptions of prior messages). Then, to succeed

in the attack, the attack must essentially be able to “break” the encryption scheme

using the information they have gained. This is formalized as the attacker requesting

encryptions of two messages (that were not previously returned as encryptions), and

the encryption scheme returning the encryption of one or the other, at random. The

adversary “wins” if they are able to identify which of the two messages they have

received the ciphertext for. The definition of security against such an attack is that

any (computationally-bounded) adversary must have only negligibly more than 50%
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chance to guess correctly.

Chosen ciphertext attacks. The second major class of attacks against encryption

schemes is the “chosen ciphertext attack.” In this class of attacks, an additional capa-

bility is given to the attacker: to request decryptions of arbitrarily chosen ciphertexts,

in addition to encryptions as in chosen plaintext attacks. Then, the adversary provides

two new plaintexts, and the encryption scheme must provide a new ciphertext (not

previously requested for encryption/decryption by the adversary) which is the encryp-

tion of one or the other, at random. In a further adaptive model, the adversary may

then request another round of interactions with the scheme (aside from the challenge

ciphertext). In either case, the adversary must then make a guess as to whether the

first or second message was encrypted, and they “win” upon guessing correctly, with

the same security definition: no more than negligibly more than 50% “advantage” in

guessing correctly.

Satisfiability. Satisfiability is a classic problem in computer science. It relates to

evaluating the truthiness of a conglomeration of Boolean operations over some set of

Boolean variables (true/false values). These operations are traditional Boolean opera-

tors (and, or, not, xor, etc.). Commonly, these formulae are expressed in Conjunctive

Normal Form (CNF), which simply means an “AND of ORs” (where any terms of the ORs

may be negated with a NOT). CNF is sufficiently expressive to capture any Boolean for-

mula [Tse68]. Satisfiability asks, is there an assignment to the variables of the formula,

such that the formula evaluates to true? It turns out that the complexity of computing

the answer in arbitrarily complex formula is in the problem class NP, and indeed is

NP-complete, roughly implying that it can be equated (or “reduced”) to a solution to

any other problem in NP and thus is at least as hard as any of them. Satisfiability is

practically interesting for two reasons. First, it is often the most easily manipulated
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problem in NP due to efficient expression in CNF and the simplicity of Boolean values

and operators. Second, any finite computer program can be approximated by a Boolean

circuit simply by expressing computational steps as manipulations of bits, and then

encoding those bitwise manipulations as Boolean operators in a formula. Thus, solving

satisfiability over intentionally-constructed formulae can express results of practical

interest, such as inputs which cause a program to reach a certain desired state.

Intrinsic or inherent leakage. In quantitative information theories, “leakage” is

defined as a quantification of information which an external party (e.g. an adversary, in

our security models) is able to garner about some hidden value. For example, knowing

four bits of a 32-bit value implies that 24 of the 232 possible values can be “fixed,”

leaving only 228 possibilities for the hidden value, e.g. in the remaining 28 bits. Thus

we say the adversary has gained four bits of information, or some protocol involved has

“leaked” those four bits. However, it is not limited to knowing or not knowing a single

bit; partial information can also be leaked, implying that the set of total possibility

for the hidden value has been reduced even if no individual bits are known to be

exclusively zero or one. Leakage is of particular interest in cryptographic protocols

where hidden values are intended to be protected from prying eyes. If a protocol leaks

too much, adversaries may irreparably gain partial or complete knowledge of these

private inputs. In this work we explore leakage which is “inherent” or “intrinsic” to given

functionalities, meaning, the leakage on the input which unavoidably occurs as long as

the adversary knows the functionality and the corresponding output. Regardless of

the robust cryptographic security of a secure protocol, this leakage may compromise

private inputs to an undesirable extent.

Corruption thresholds. In secure multi-party computation (MPC) there is a notion

of thresholds of corrupted parties (or participants). That is, if a protocol is to be
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executed amongst n parties, some t < n may be considered to be “corrupted” if they

are controlled by the notional adversary to the protocol. Obviously if all n parties are

corrupted then no security can be guaranteed. Various cases are studied in the MPC

literature, to varying degrees of flexibility on the extents of what can be achieved under

given conditions. We will review a number of thresholds which are meaningful. First,

t = n−1, where only a single party behaves honestly; in this case some basic protocols

may remain secure such as shared randomness generation (“coin-flipping protocols”)

which often XOR random inputs from participants. As long as one honestly-generated

random value is included in the exclusive-or operation, the output will be random. Next,

there is t < 2n
3 , where at least 1

3 of participants remain honest; some functionalities can

be made resilient in limited ways against such conditions. Naturally, thresholds of

t near n
2 are next; whether guaranteeing at least some dishonest or honest majority

of minimal size. Particularly in the honest majority case, the range of functionalities

and the levels of resilience to attack increase significantly. Finally, t < n
3 , an honest

super-majority of at least two thirds, greatly increases the range and kinds of resilience.

In this model, Byzantine fault-tolerant [LSP19; BFM90] protocols can be employed

to ensure eventual consistency amongst the honest parties. In all models we also

consider whether the adversarial participants are “honest-but-curious,” that is, if they

will behave honestly but inspect any protocol messages to attempt to ascertain secrets,

or “fully malicious,” participating in the protocol but also freely interacting outside

the “rules” of the protocol, e.g. by sending invalid messages, attempting to spoof their

identities, or selectively rejecting/aborting.

Domain-specific languages. A domain-specific language (DSL) is a programming

language designed to encode meaningful operations within a given context, usually as

a convenience for practitioners. DSLs are often subsets of or inspired by “fully qualified”

programming languages, and generally rely on those languages to provide interpreters
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or translators to give the DSL purpose. DSLs are a common way for practitioners to

encode domain knowledge in a “documentation-as-code” sense, enabling non-expert

users to engage with and apply the encoded expertise to achieve some meaningful

goals within the domain. In this work we explore DSLs as a method to encode domain

expertise about Boolean satisfiability for bitvectors in order to ease the use of the

tools we provide; our goal is to enable non-experts to meaningfully encode their target

programs/functionalities using our DSLs rather than “raw” Boolean circuits, so that

our software tools may intake them and provide useful results.
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Chapter 2

Delphinium

This chapter is based on joint work with Gabrielle Beck originally published in Usenix

Security 2020 [BZG20a].

There exists extensive practical guidance such as standards [NIS24] and a wealth of

research literature on the topics of cryptosystems that are safe, secure, or recommended

for use. However, it is often much less clear whether a given system is safe to use in

a given context or setting, and indeed it is often in the interactions between systems

where vulnerabilities may arise, rather than in protocol designs themselves.

The past decades have seen enormous improvement in our understanding of cryp-

tographic protocol design. Consider, for example, web encryption techniques: from

the earliest versions of SSL [WS+96] to the most recent iterations of TLS [Dow+15],

industry and academic communities have worked together to dramatically improve

the practice of secure protocol design. Despite these advances, vulnerable protocols

remain widely deployed. In many cases this is a result of continued support for legacy

protocols and ciphersuites, such as TLS CBC-mode ciphers [Smi12; AP13], export-grade

encryption [Beu+15; Adr+15; Avi+16], and legacy email encryption [Pod+18]. However,

support for legacy protocols does not account for the presence of vulnerabilities in more

recent cryptosystems [W3C17; JS11; Mau+15; Gar+16a; VP17].
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In this chapter we consider a specific class of vulnerability: the continued use of

unauthenticated symmetric encryption in many cryptographic systems. While the

research community has long noted the threat of adaptive-chosen ciphertext attacks on

malleable encryption schemes [Bel96; NY90; BN00], these concerns gained practical

salience with the discovery of padding oracle attacks on a number of standard encryp-

tion protocols [Vau02; Hun10; Bar+12; AP13; MDK14; APW09; DP10; Can+03a; Mit05].

Despite repeated warnings to industry, variants of these attacks continue to plague

modern systems, including TLS 1.2’s CBC-mode ciphersuite [AP13; AP15; Mer+19] and

hardware key management tokens [Bar+12; AF18]. A generalized variant, the format

oracle attack can be constructed when a decryption oracle leaks the result of applying

some (arbitrarily complex) format-checking predicate F to a decrypted plaintext. For-

mat oracles appear even in recent standards such as XML encryption [JS11; Kup+15],

Apple’s iMessage [Gar+16a] and modern OpenPGP implementations [Mau+15; Pod+18].

These attacks likely represent the “tip of the iceberg”: many vulnerable systems may

remain undetected, due to the difficulty of exploiting non-standard format oracles. We

seek to empower end users and non-expert practitioners to uncover vulnerabilities in

this class to determine the safety of cryptosystems in the context of their use.

From a constructive viewpoint, format oracle vulnerabilities seem easy to mitigate:

simply mandate that protocols use authenticated encryption. Unfortunately, even this

advice may be insufficient: common authenticated encryption schemes can become

insecure due to implementation flaws such as nonce re-use [Jou06; MW16; Böc+16].

Setting aside implementation failures, the continued deployment of unauthenticated

encryption raises an obvious question: why do these vulnerabilities continue to appear

in modern protocols? The answer highlights a disconnect between the theory and

the practice of applied cryptography. In many cases, a vulnerable protocol is not

obviously an exploitable protocol. This is particularly true for non-standard format
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Figure 2.1: Output of a format oracle attack that our algorithms developed against a bitwise
padding check oracle Fbitpad (see §2.10.2 for a full description). The original ciphertext is a valid
128-bit (random) padded message encrypted using a stream cipher. Each row of the bitmap
represents a malleation string that was exclusive-ORed with the ciphertext prior to making a
decryption query.

oracles which require entirely new exploit strategies. As a concrete example, the

authors of [Gar+16a] report that Apple did not repair a complex gzip compression

format oracle in the iMessage protocol when the lack of authentication was pointed

out; but did mitigate the flaw when a concrete exploit was demonstrated. Similar flaws

in OpenPGP clients [Gar+16a; Pod+18] and PDF encryption [Mül+19] were addressed

only when researchers developed proof-of-concept exploits. The unfortunate aspect of

this strategy is that cryptographers’ time is limited, which leads protocol designers to

discount the exploitability of real cryptographic flaws.

Removing the human (expert) element. In this work we investigate the feasibility

of automating the design and development of adaptive chosen ciphertext attacks on

symmetric encryption schemes. We stress that our goal is not simply to automate

the execution of known attacks, as in previous works [Kup+15]. Instead, we seek to

develop a methodology and a set of tools to (1) evaluate if a system is vulnerable to

practical exploitation, and (2) programmatically derive a novel exploit strategy, given
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only a description of the target. This removes the expensive human element from

attack development, obviating the need for specialized expertise and democratizing

the process of determining cryptosystem safety.

To emphasize the ambitious nature of our problem, we summarize our motivating

research question as follows:

Given a machine-readable description of a format checking function F along

with a description of the encryption scheme’s malleation properties, can we

programatically derive a chosen-ciphertext attack that allows us to efficiently

decrypt arbitrary ciphertexts?

Our primary requirement is that the software responsible for developing this attack

should require no further assistance from human beings. Moreover, the developed

attack must be efficient: ideally it should not require substantially more work (as mea-

sured by number of oracle queries and wall-clock execution time) than the equivalent

attack developed through manual human optimization.

To our knowledge, this work represents the first attempt to automate the discovery

of novel adaptive chosen ciphertext attacks against symmetric format oracles. While

our techniques are designed to be general, in practice they are unlikely to succeed

against every possible format checking function. Instead, in this work we initiate a

broader investigation by exploring the limits of our approach against various real-

world and contrived format checking functions. Beyond presenting our techniques, our

practical contribution includes a tool set that we name Delphinium, which produces

highly-efficient attacks across several such functions.

Relationship to previous automated attack work. Previous work [BRB18; Pha+17;

CSP16] has looked at automatic discovery and exploitation of side channel attacks. In
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this setting, a program combines a fixed secret input with many “low” inputs that are

(sometimes adaptively) chosen by an attacker, and produces a signal, e.g., modeling

a timing result. This setting can be viewed as a special case of our general model

(and vice versa). Like our techniques, several of these works employ SAT solvers and

model counting techniques. However, beyond these similarities, there are fundamental

differences that manifest in our results: (1) in this work we explore a new approach based

on approximate model counting, and (2) as a result of this approach, our results operate

over much larger secret domains than the cited works. To illustrate the differences, our

experimental results succeed on secret (message) domains of several hundred bits in

length, with malleation strings (“low inputs”) drawn from similarly-sized domains. By

contrast, the cited works operate over smaller secret domains that rarely even reach a

size of 224. Moreover, our format functions are relatively complex. It is an open question

to determine whether the experimental results in the cited works can be scaled using

our techniques.

Our contributions.. First, we propose new, and fully automated algorithms for

developing format oracle attacks on symmetric encryption (and hybrid encryption)

schemes. Our algorithms are designed to work with arbitrary format checking functions,

using a machine-readable description of the function and the scheme’s malleation

features to develop the attack strategy. Second, we design and implement novel attack-

development techniques that use approximate model counting techniques to achieve

significantly greater efficiency than previous works. These techniques may be of

independent interest. Third, we show how to implement our technique practically

with existing tools such as SAT and SMT solvers; and propose a number of efficiency

optimizations designed to improve performance for specific encryption schemes and

attack conditions. Next, we develop a working implementation of our techniques using

“off-the-shelf” SAT and SMT packages, and provide the resulting software package
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(which we call Delphinium) as an open source tool for use and further development by

the research community. Finally, We validate our tool experimentally, deriving several

attacks using different format-checking functions. These experiments represent, to our

knowledge, the first evidence of a completely functioning end-to-end machine-developed

format oracle attack.

2.1 Intuition

Implementing a basic format oracle attack. In a typical format oracle attack, the

attacker has obtained some target ciphertext C∗ =EncryptK (M∗) where K and M∗ are

unknown. She has access to a decryption oracle that, on input any chosen ciphertext

C, returns F(DecryptK (C)) ∈ {0,1} for some known predicate F. The attacker may have

various goals, including plaintext recovery and forgery of new ciphertexts. Here we

will focus on the former goal.

The challenge in this setting is to programmatically derive an attack strategy given

only a description of F and encryption scheme. Expressed at a conceptual level, conduct-

ing a format oracle attack requires the attacker to formulate a series of experiments,

each based on the current state of the attacker’s knowledge. In our approach, each

experiment will comprise a specific malleation that can be applied to the target C∗.

We must generate these experiments using only a machine-readable description of the

format checking function and the malleation features of the scheme.

We define Maulplain as a function that, on input a plaintext M and some opaque

“malleation instruction string” S, outputs (zero or more) possible “mauled” plaintexts M′.

The critical aspect of this function is that the malleation function corresponds to some

concrete ciphertext malleation function Maulciph that can apply the same malleation

string to a ciphertext, without knowledge of the encryption key.
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At the highest level, this attack can be viewed as a repeated process of (1) deriving

initial constraints over M, (2) generating an experiment that can be submitted to the

oracle, and (3) using the result of this experiment to update the constraint set on M.

The attack concludes when the constraints uniquely define M, or when no further

constraints can be identified.

Given these inputs, our algorithms must now programmatically (and adaptively)

generate a sequence of experiments, each of which comprises some malleation instruc-

tion string S that can be used to maul the target ciphertext. The resulting mauled

ciphertext is submitted to the decryption oracle, and the result b ∈ {0,1} is fed back into

our algorithm, which completes when M is known or no further experiments can be

generated. A key requirement is that our techniques are general: i.e., they are not

tuned to work with any specific format-checking function or malleation function.

In the remainder of this section we will express our constraint formulae in an

“ideal” language that includes clauses such as set membership operations and universal

quantifiers. We note that this notation is used purely to simplify the exposition. In

practice, theory solvers are significantly more constrained in the logical operations they

can reason over. A key technical contribution of this work is showing how to realize our

constructions in the face of these limitations.

Describing malleability. Our attacks exploit the malleability characteristics of

symmetric encryption schemes. Because the encryption schemes themselves can be

complex, we do not want our algorithms to reason over the encryption mechanism

itself. Instead, for a given encryption scheme Π, we require the user to develop two

efficiently-computable functions that define the malleability properties of the scheme.

The function MaulΠciph(C,S) → C′ takes as input a valid ciphertext and some opaque

malleation instruction string S (henceforth “malleation string”), and produces a new,
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mauled ciphertext C′. The function MaulΠplain(M,S)→ M′ computes the equivalent mal-

leation over some plaintext, producing a plaintext or, in some cases, a set of possible

plaintexts. This captures the fact that, in some encryption schemes (e.g., CBC-mode

encryption), malleation produces key-dependent effects on the decrypted message. We

discuss and formalize this in §2.2. The essential property we require from these func-

tions is that the plaintext malleation function should “predict” the effects of encrypting

a plaintext M, mauling the resulting ciphertext, then subsequently decrypting the

result. For some typical encryption schemes, these functions can be simple: for exam-

ple, a simple stream cipher can be realized by defining both functions to be bitwise

exclusive-OR. However, malleation functions may also implement features such as

truncation or more sophisticated editing, which could imply a complex and structured

malleation string.

Building block: theory solvers. Our techniques make use of efficient theory solvers,

such as SAT and Satisfiability Modulo Theories (SMT) [Gan18; MB08]. SAT solvers

apply a variety of tactics to identify or rule out a satisfying assignment to a boolean

constraint formula, while SMT adds a broader range of theories and tactics such as

integer arithmetic and string logic. While in principle our techniques can be extended

to work with either system, in practice we will focus our techniques to use quantifier-

free operations over bitvectors (a theory that easily reduces to SAT). In later sections,

we will show how to realize these techniques efficiently using concrete SAT and SMT

packages.

While enormous progress has been made in both the theory and practice of SMT and

SAT solving, theory solvers do not, by themselves, provide a solution to our problem. In

particular, these tools have no concept of formulating oracle queries to a cryptographic

functionality. To realize our techniques, we instead use these solvers as a subroutine in
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a larger attack algorithm. A fortunate aspect of this approach is that we are thus able

to use existing solvers as a “black box,” rather than developing new solver theories. This

means that our techniques can be instantiated with a variety of off-the-shelf theory

solvers [MB08; Gan18; SNC09; Nie+18].

Anatomy of our attack algorithm. The essential idea in our approach is to model

each phase of a chosen ciphertext attack as a constraint satisfaction problem. At

the highest level, we begin by devising an initial constraint formula that defines the

known constraints on (and hence, implicitly, a set of candidates for) the unknown

plaintext M∗. At each phase of the attack, we will use our current knowledge of these

constraints to derive an experiment that, when executed against the real decryption

oracle, allows us to “rule out” some non-zero number of plaintext candidates. Given

the result of a concrete experiment, we can then update our constraint formula using

the new information, and continue the attack procedure until no further candidates

can be eliminated.

In the section that follows, we use M0,M1 to represent the partition of messages

induced by a malleation string. M0 and M1 represent concrete plaintext message

assignments chosen by the solver, members of the respective partitions.

The process of deriving the malleation string represents the core of our technical

work. It requires our algorithms to reason deeply over both the plaintext malleation

function and the format checking function in combination. To realize this, we rely

heavily on theory solvers, together with some novel optimization techniques.

Attack intuition. We now explain the full attack in greater detail. To provide a clear

exposition, we will begin this discussion by discussing a simplified and inefficient

precursor algorithm that we will later optimize to produce our main result. Our

discussion below will make a significant simplifying assumption that we will later
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remove: namely, that Maulplain will output exactly one plaintext for any given input.

This assumption is compatible with common encryption schemes such as stream ciphers,

but will not be valid for other schemes where malleation can produce key-dependent

effects following decryption.

We now describe the basic steps of our first attack algorithm.

Step 0: Initialization. At the beginning of the attack, our attack algorithm receives as

input a target ciphertext C∗, as well as a machine-readable description of the functions F

and Maulplain. We require that these descriptions be provided in the form of a constraint

formula that a theory solver can reason over. To initialize the attack procedure, the

user may also provide an initial constraint predicate G0 : {0,1}n → {0,1} that expresses

all known constraints over the value of M∗. Here, n represents an upper bound on the

length of the plaintext M∗. If we have no a priori knowledge about the distribution of

M∗, we can set this initial formula G0 to be trivial.

Beginning with i = 1, the attack now proceeds to iterate over the following two steps:

Step 1: Identify an experiment. Let G i−1 be the current set of known constraints on M∗.

In this first step, we employ the solver to identify a malleation instruction string S

as well as a pair of distinct plaintexts M0, M1 that each satisfy the constraints of G i−1.

Our goal is to identify an assignment for (S, M0, M1) that induces the following specific

properties on M0,M1: namely, that each message in the pair, when mauled using S

and then evaluated using the format checking function, results in a distinct output

from F. Expressed more concretely, we require the solver to identify an assignment
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that satisfies the following constraint formula:

G i−1(M0)=G i−1(M1)= 1 ∧ (2.1)

∀b ∈ {0,1} : F(Maulplain(Mb,S))= b

If the solver is unable to derive a satisfying assignment to this formula, we conclude the

attack and proceed to Step (3). Otherwise we extract a concrete satisfying assignment

for S, assign this value to S, and proceed to the next step.

Step 2: Query the oracle; update the constraints. Given a concrete malleation string S,

we now apply the ciphertext malleation function to compute an experiment ciphertext

C ←Maulciph(C∗,S), and submit C to the decryption oracle. When the oracle produces a

concrete result r ∈ {0,1}, we compute an updated constraint formula G i such that for

each input M, it holds that:

G i(M)← (G i−1(M) ∧ F(Maulplain(M,S))= r)

If possible, we can now ask the solver to simplify the formula G i by eliminating redun-

dant constraints in the underlying representation. We now set i ← i+1 and return to

Step (1).

Step 3: Attack completion. The attack concludes when the solver is unable to identify a

satisfying assignment in Step (1). In the ideal case, this occurs because the constraint

system G i−1 admits only one possible candidate plaintext, M∗: when this happens, we

can employ the solver to directly recover M∗ and complete the attack. However, the

solver may also fail to find an assignment because no further productive experiment can

be generated, or simply because finding a solution proves computationally intractable.

When the solver conclusively rules out a solution at iteration i = 1 (i.e., prior to issuing

any decryption queries) this can be taken as an indication that a viable attack is not
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practical using our techniques. Indeed, this feature of our work can be used to rule

out the exploitability of certain systems, even without access to a decryption oracle. In

other cases, the format oracle may admit only partial recovery of M∗. If this occurs,

we conclude the attack by applying the solver to the final constraint formula G i−1 to

extract a human-readable description of the remaining candidate space (e.g., the bits

of M∗ we are able to uniquely recover).

Remark on efficiency. A key feature of the attack described above is that it is guaranteed

to make progress at each round in which the solver is able to find a satisfying assignment

to Equation (1). This is fundamental to the constraint system we construct: our

approach forces the solver to ensure that each malleation string S implicitly partitions

the candidate message set into a pair (M0, M1), such that malleation of messages in

either subset by S will produce distinct outputs from the format checking function F.

As a consequence of this, for any possible result from the real-world decryption oracle,

the updated constraint formula G i must eliminate at least one plaintext candidate that

satisfied the previous constraints G i−1.

While this property ensures progress, it does not imply that the resulting attack will

be efficient. In some cases, the addition of a new constraint will fortuitously rule out a

large number of candidate plaintexts. In other cases, it might only eliminate a single

candidate. As a result, there exist worst-case attack scenarios where the algorithm

requires as many queries as there are candidates for M∗, making the approach completely

unworkable for practical message sizes. Addressing this efficiency problem requires us

to extend our approach.

Improving query profitability. We can define the profitability ψ(G i−1,G i) of an

experimental query by the number of plaintext candidates that are “ruled out” once an

experiment has been executed and the constraint formula updated. In other words,

22



CHAPTER 2. DELPHINIUM

M0
<latexit sha1_base64="M1BMgW9yC0sfoEjw99b+gXKVwgU=">AAAB8XicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04kWoYD+wDWWznbRLN5uwuxFK6L/w4kERr/4bb/4bt20O2vpg4PHeDDPzgkRwbVz321lZXVvf2CxsFbd3dvf2SweHTR2nimGDxSJW7YBqFFxiw3AjsJ0opFEgsBWMbqZ+6wmV5rF8MOME/YgOJA85o8ZKj1mXUUHuJj23Vyq7FXcGsky8nJQhR71X+ur2Y5ZGKA0TVOuO5ybGz6gynAmcFLupxoSyER1gx1JJI9R+Nrt4Qk6t0idhrGxJQ2bq74mMRlqPo8B2RtQM9aI3Ff/zOqkJr/yMyyQ1KNl8UZgKYmIyfZ/0uUJmxNgSyhS3txI2pIoyY0Mq2hC8xZeXSbNa8c4r1fuLcu06j6MAx3ACZ+DBJdTgFurQAAYSnuEV3hztvDjvzse8dcXJZ47gD5zPH91XkGI=</latexit>

M⇤
<latexit sha1_base64="5zR0Fbppn5rAnb6ymtZ37sXxhWA=">AAAB6nicbVDLSgNBEOz1GeMr6tHLYBDEQ9iNgh6DXrwIEc0DkjXMTibJkNnZZaZXCEs+wYsHRbz6Rd78GyfJHjSxoKGo6qa7K4ilMOi6387S8srq2npuI7+5tb2zW9jbr5so0YzXWCQj3Qyo4VIoXkOBkjdjzWkYSN4IhtcTv/HEtRGResBRzP2Q9pXoCUbRSve3j6edQtEtuVOQReJlpAgZqp3CV7sbsSTkCpmkxrQ8N0Y/pRoFk3ycbyeGx5QNaZ+3LFU05MZPp6eOybFVuqQXaVsKyVT9PZHS0JhRGNjOkOLAzHsT8T+vlWDv0k+FihPkis0W9RJJMCKTv0lXaM5QjiyhTAt7K2EDqilDm07ehuDNv7xI6uWSd1Yq350XK1dZHDk4hCM4AQ8uoAI3UIUaMOjDM7zCmyOdF+fd+Zi1LjnZzAH8gfP5A79MjXE=</latexit>

M1
<latexit sha1_base64="qrzZLPbzWZoWeKKFcxmBY7acdOw=">AAAB8XicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04kWoYD+wDWWznbRLN5uwuxFK6L/w4kERr/4bb/4bt20O2vpg4PHeDDPzgkRwbVz321lZXVvf2CxsFbd3dvf2SweHTR2nimGDxSJW7YBqFFxiw3AjsJ0opFEgsBWMbqZ+6wmV5rF8MOME/YgOJA85o8ZKj1mXUUHuJj2vVyq7FXcGsky8nJQhR71X+ur2Y5ZGKA0TVOuO5ybGz6gynAmcFLupxoSyER1gx1JJI9R+Nrt4Qk6t0idhrGxJQ2bq74mMRlqPo8B2RtQM9aI3Ff/zOqkJr/yMyyQ1KNl8UZgKYmIyfZ/0uUJmxNgSyhS3txI2pIoyY0Mq2hC8xZeXSbNa8c4r1fuLcu06j6MAx3ACZ+DBJdTgFurQAAYSnuEV3hztvDjvzse8dcXJZ47gD5zPH97bkGM=</latexit>

M0
<latexit sha1_base64="M1BMgW9yC0sfoEjw99b+gXKVwgU=">AAAB8XicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04kWoYD+wDWWznbRLN5uwuxFK6L/w4kERr/4bb/4bt20O2vpg4PHeDDPzgkRwbVz321lZXVvf2CxsFbd3dvf2SweHTR2nimGDxSJW7YBqFFxiw3AjsJ0opFEgsBWMbqZ+6wmV5rF8MOME/YgOJA85o8ZKj1mXUUHuJj23Vyq7FXcGsky8nJQhR71X+ur2Y5ZGKA0TVOuO5ybGz6gynAmcFLupxoSyER1gx1JJI9R+Nrt4Qk6t0idhrGxJQ2bq74mMRlqPo8B2RtQM9aI3Ff/zOqkJr/yMyyQ1KNl8UZgKYmIyfZ/0uUJmxNgSyhS3txI2pIoyY0Mq2hC8xZeXSbNa8c4r1fuLcu06j6MAx3ACZ+DBJdTgFurQAAYSnuEV3hztvDjvzse8dcXJZ47gD5zPH91XkGI=</latexit>

M⇤
<latexit sha1_base64="5zR0Fbppn5rAnb6ymtZ37sXxhWA=">AAAB6nicbVDLSgNBEOz1GeMr6tHLYBDEQ9iNgh6DXrwIEc0DkjXMTibJkNnZZaZXCEs+wYsHRbz6Rd78GyfJHjSxoKGo6qa7K4ilMOi6387S8srq2npuI7+5tb2zW9jbr5so0YzXWCQj3Qyo4VIoXkOBkjdjzWkYSN4IhtcTv/HEtRGResBRzP2Q9pXoCUbRSve3j6edQtEtuVOQReJlpAgZqp3CV7sbsSTkCpmkxrQ8N0Y/pRoFk3ycbyeGx5QNaZ+3LFU05MZPp6eOybFVuqQXaVsKyVT9PZHS0JhRGNjOkOLAzHsT8T+vlWDv0k+FihPkis0W9RJJMCKTv0lXaM5QjiyhTAt7K2EDqilDm07ehuDNv7xI6uWSd1Yq350XK1dZHDk4hCM4AQ8uoAI3UIUaMOjDM7zCmyOdF+fd+Zi1LjnZzAH8gfP5A79MjXE=</latexit>

Gi�1
<latexit sha1_base64="S1j5w+NfiWTdPk8skSfhXhxrrUQ=">AAAB7nicbVBNS8NAEJ34WetX1aOXxSJ4sSRV0GPRgx4r2A9oQ9lsN+3SzSbsToQS+iO8eFDEq7/Hm//GbZuDtj4YeLw3w8y8IJHCoOt+Oyura+sbm4Wt4vbO7t5+6eCwaeJUM95gsYx1O6CGS6F4AwVK3k40p1EgeSsY3U791hPXRsTqEccJ9yM6UCIUjKKVWne9TJx7k16p7FbcGcgy8XJShhz1Xumr249ZGnGFTFJjOp6boJ9RjYJJPil2U8MTykZ0wDuWKhpx42ezcyfk1Cp9EsbalkIyU39PZDQyZhwFtjOiODSL3lT8z+ukGF77mVBJilyx+aIwlQRjMv2d9IXmDOXYEsq0sLcSNqSaMrQJFW0I3uLLy6RZrXgXlerDZbl2k8dRgGM4gTPw4ApqcA91aACDETzDK7w5ifPivDsf89YVJ585gj9wPn8At6SPKQ==</latexit>

Gi
<latexit sha1_base64="OBeHGUbhgcMPk9H7MrZd2pezA6s=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiBz1WMG2hDWWznbZLN5uwuxFK6G/w4kERr/4gb/4bt20O2vpg4PHeDDPzwkRwbVz32ymsrW9sbhW3Szu7e/sH5cOjpo5TxdBnsYhVO6QaBZfoG24EthOFNAoFtsLx7cxvPaHSPJaPZpJgENGh5APOqLGSf9fL+LRXrrhVdw6ySrycVCBHo1f+6vZjlkYoDRNU647nJibIqDKcCZyWuqnGhLIxHWLHUkkj1EE2P3ZKzqzSJ4NY2ZKGzNXfExmNtJ5Eoe2MqBnpZW8m/ud1UjO4DjIuk9SgZItFg1QQE5PZ56TPFTIjJpZQpri9lbARVZQZm0/JhuAtv7xKmrWqd1GtPVxW6jd5HEU4gVM4Bw+uoA730AAfGHB4hld4c6Tz4rw7H4vWgpPPHMMfOJ8/26SOtw==</latexit>

Figure 2.2: Left: illustration of a plaintext candidate space defined by G i−1, highlighting
the two subsets M0,M1 induced by a specific malleation string S. Right: the candidate space
defined by G i, in which many candidates have been eliminated following an oracle response
b = 1.

this value is defined as the number of plaintext candidates that satisfy G i−1 but do not

satisfy G i. The main limitation of our first attack strategy is that it does not seek to

optimize each experiment to maximize query profitability.

To address this concern, let us consider a more general description of our attack

strategy, which we illustrate in Figure 2.2. At the ith iteration, we wish to identify a

malleation string S that defines two disjoint subsets M0,M1 of the current candidate

plaintext space, such that for any concrete oracle result r ∈ {0,1} and ∀M ∈Mr it holds

that F(Maulplain(M,S)) = r. In this description, any concrete decryption oracle result

must “rule out” (at a minimum) every plaintext contained in the subset M1−r. This sets

ψ(G i−1,G i) equal to the cardinality of M1−r.

To increase the profitability of a given query, it is therefore necessary to maximize

the size of M1−r. Of course, since we do not know the value r prior to issuing a decryption

oracle query, the obvious strategy is to find S such that both M0,M1 are as large as

possible. Put slightly differently, we wish to find an experiment S that maximizes the

cardinality of the smaller subset in the pair. The result of this optimization is a greedy

algorithm that will seek to eliminate the largest number of candidates with each query.

Technical challenge: model count optimization. While our new formulation is

conceptually simple, actually realizing it involves overcoming serious limitations in
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current theory solvers. This is due to the fact that, while several production solvers

provide optimization capabilities [MB08], these heuristics optimize for the value of

specific variables. Our requirement is subtly different: we wish to solve for a candidate

S that maximizes the number of satisfying solutions for the variables M0, M1 in Equa-

tion (1). Some experimental SMT implementations provide logic for reasoning about

the cardinality of small sets, these strategies scale poorly to the large sets we need to

reason about in practical format oracle attacks in domains of exponential size.

Unfortunately, this problem is both theoretically and practically challenging. Indeed,

merely counting the number of satisfying assignments to a constraint formula is

known to be asymptotically harder than SAT [Val79b; Tod91], and practical counting

algorithms solutions [BL99; BJP00] tend to perform poorly when the combinatorial

space is large and the satisfying assignments are sparsely distributed throughout the

space, a condition that is likely in our setting. The specific optimization problem our

techniques require proves to be even harder. Indeed, only recently was such a problem

formalized, under the name Max#SAT [FRS17].

Approximating Max#SAT. While an exact solution to Max#SAT is known to be

NPPP-complete [FRS17; Tod91], several works have explored approximate solutions to

this and related counting problems [GSS06; CMV16a; SM19; FRS17]. One powerful

class of approximate counting techniques, inspired by the theoretical work of Valiant

and Vazirani [VV86] and Stockmeyer [Sto83], uses a SAT oracle as follows: given

a constraint formula F over some bitvector T, add to F a series of s random parity

constraints, each computed over the bits of T. For j = 1 to s, the jth parity constraint

can be viewed as requiring that H j(T)= 1 where H j : {0,1}|T| → {0,1} is a universal hash

function. Intuitively, each additional constraint reduces the number of satisfying

assignments approximately by half, independently of the underlying distribution of
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valid solutions. The implication is as follows: if a satisfying assignment to the enhanced

formula exists, we should be convinced (probabilistically) that the original formula is

likely to possess on the order of 2s satisfying assignments. Subsequently, researchers in

the model counting community showed that with some refinement, these approximate

counting strategies can be used to approximate Max#SAT [FRS17], although with an

efficiency that is substantially below what we require for an efficient attack.

To apply this technique efficiently, we develop a custom count-optimization proce-

dure, and apply it to the attack strategy given in the previous section. At the start of

each iteration, we begin by conjecturing a candidate set size 2s for some non-negative

integer s, and then we query the solver for a solution to (S, M0, M1) in which approxi-

mately 2s solutions can be found for each of the abstract bitvectors M0, M1. This involves

modifying the equation of Step (1) by adding s random parity constraints to each of

the abstract representations of M0 and M1. We now repeatedly query the solver on

variants of this query, with increasing (resp. decreasing) values of s, until we have

identified the maximum value of s that results in a satisfying assignment. Note that

s = 0 represents the original constraint formula, and so a failure to find a satisfying

assignment at this size triggers the conclusion of the attack. For a sufficiently high

value of s, this approach effectively eliminates many “unprofitable” malleation string

candidates and thus significantly improves the efficiency of the attack.

The main weakness of this approach stems from the probabilistic nature of the

approximation algorithm. Even when 2s satisfying assignments exist for M0, M1, the

solver may deem the extended formula unsatisfiable with relatively high probability.

In our approach, this false-negative will cause the algorithm to reduce the size of s,

potentially resulting in the selection of a less-profitable experiment S. Following Gomes

et al. [GSS06], we are able to substantially improve our certainty by conducting t trials

within each query, accepting if and only if at least ⌈(1
2 +δ)t⌉ trials are satisfied, where δ
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is an adjustable tolerance parameter.

Unlike Gomes et al. (who only consider model counting), our optimization approach

does not allow us to perform these trials over the course of several distinct solver queries,

since each trial in our optimization must be bound to the same abstract malleation

string S. Thus all trials must be contained within a single extended constraint formula

in order to ensure a specific optimal S is found. This added complexity requires us

to carefully tune the parameters of our attack, in order to trade query profitability

against solver runtime. We discuss these tradeoffs in more detail in §2.10.

Putting it all together. The presentation above is intended to provide the reader

with a simplified description of our techniques. However, this discussion does not

convey most challenging aspect of our work: namely, the difficulty of implementing our

techniques and making them practical, particularly within the limitations of existing

theory solvers. Achieving the experimental results we present in this work represents

the result of months of software engineering effort and manual algorithm optimization.

We discuss these challenges more deeply in §2.8.

Using our techniques we were able to re-discover both well known and entirely

novel chosen ciphertext attacks, all at a query efficiency nearly identical to the (optimal

in expectation) human-implemented attacks. Our experiments not only validate the

techniques we describe in this work, but they also illustrate several possible avenues

for further optimization, both in our algorithms and in the underlying SMT/SAT solver

packages. Our hope is that these results will inspire further advances in the theory

solving community.
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2.2 Preliminaries

Notation. Let λ be a security parameter. We will use A∥B to denote string concatenation,

and |A| to indicate the length of a string A in bits. Given bitstrings A,B of unequal

length, we will denote A⊕B to be the bitwise exclusive-or of A and B, where the shorter

of the two strings is padded on the right side to the length of the longer. When describing

constraint formulae, we will use standard typeface to refer to abstract variables, and

boldface to indicate a concrete variable.

2.2.1 Encryption Schemes and Malleability

Our attacks operate assume that the target system is using a malleable symmetric

encryption scheme. We now provide definitions for these terms.

Definition 1 (Symmetric encryption) A symmetric encryption scheme Π is a tuple

of algorithms (KeyGen,Encrypt,Decrypt) where KeyGen(1λ) generates a key, the probabilis-

tic algorithm EncryptK (M) encrypts a plaintext M under key K to produce a ciphertext

C, and the deterministic algorithm DecryptK (C) decrypts C to produce a plaintext or the

distinguished error symbol ⊥. We use M to denote the set of valid plaintexts accepted

by a scheme, and C to denote the set of valid ciphertexts.

Our techniques exploit encryption schemes that are malleable, meaning that there

exists an efficient ciphertext transformation that induces a predictable effect upon

decryption. To derive our attack, we require the user to provide us with a machine-

readable description of the malleation features of the scheme.
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2.2.1.1 Malleation Functions

The description of malleation functions is given in the form of two functions. The first

takes as input a ciphertext along with an opaque data structure that we refer to as a

malleation instruction string, and outputs a mauled ciphertext. The second function

performs the analogous function on a plaintext. We require that the following intuitive

relationship hold between these functions: given a plaintext M and an instruction

string, the plaintext malleation function should “predict” the effect of mauling (and

subsequently decrypting) a ciphertext that encrypts M.

Definition 2 (Malleation functions) The malleation functions for a symmetric en-

cryption scheme Π comprise a pair of efficiently-computable functions (MaulΠciph,MaulΠplain)

with the following properties. Let M,C be the plaintext (resp. ciphertext) space of Π.

The function MaulΠciph : C× {0,1}∗ →C∪ {⊥} takes as input a ciphertext and a malleation

instruction string. It outputs a ciphertext or the distinguished error symbol ⊥. The

function MaulΠplain : M× {0,1}∗ → M̂, on input a plaintext and a malleation instruction

string, outputs a set M̂⊆M ∪ {⊥} of possible plaintexts (augmented with the decryption

error symbol ⊥). The structure of the malleation string is entirely defined by these

functions; since our attack algorithms will reason over the functions themselves, we

treat S itself as an opaque value.

We say that (MaulΠciph,MaulΠplain) describes the malleability features of Π if malleation

of a ciphertext always induces the expected effect on a plaintext following encryption,

malleation and decryption. More formally, ∀K ∈ KeyGen(1λ),∀C ∈ C,∀S ∈ {0,1}∗ the

following relation must hold whenever MaulΠciph(C,S) ̸= ⊥:

DecryptK (MaulΠciph(C,S)) ∈MaulΠplain(DecryptK (C),S)

Simple stream ciphers (no truncation). Stream ciphers employ a pseudorandom
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generator to produce a keystream that is combined with the plaintext using bitwise

exclusive-OR. We will consider an abstract stream cipher Πstream, with the caveat that

our formulation omits many practical details such as the generation and delivery of

nonces/IVs/state (in this formulation we treat these details as external to the ciphertext).

To encrypt a message M ∈ {0,1}l, the Encrypt algorithm generates a keystream KS ∈
{0,1}l based on some (unspecified) state or randomness. It formulates the ciphertext

as C = KS ⊕ M. Decryption follows the same steps. Because the decryption process

will preserve exclusive-OR operations on the ciphertext, we can define the functions

MaulΠstream
plain and MaulΠstream

ciph to each be the bitwise exclusive-OR function.

Stream ciphers with truncation. Many stream ciphers permit plaintext truncation,

in which bits of ciphertext (resp. plaintext) are removed from either the beginning or

end of the plaintext string. In some stream ciphers, such as CTR-mode encryption, it is

possible to truncate one or more blocks from the input by incrementing the Initialization

Vector. Not every stream cipher admits this capability. We can define a malleation

function MaulΠtstream
ciph (resp. MaulΠtstream

plain ) that parses S as S′∥l∥r, where l, r ≥ 0 are each

decoded as an integer indicating the desired amount to truncate from the high-order

(resp. low-order) bits of the plaintext. Truncation is not possible for all stream ciphers,

and specific realizations have different limitations. We further discuss these in §2.8. In

§2.8.2.1 we discuss the collection of encryption schemes and the details of implementing

their associated malleation functions.

Remarks. Note that the function MaulΠciph outputs a single ciphertext. By contrast,

the plaintext malleation function MaulΠplain outputs a set of possible decryption results.

This captures the possibility that certain forms of malleation can induce unpredictable

key-dependent effects when ciphertexts are decrypted. A simple example of this phe-

nomenon occurs with CBC-mode encrypted ciphertext, where a single-bit change in
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the ciphertext can result in pseudorandom output within the corresponding block of

plaintext.

Finally, we note that a description of these functions is necessary, but not sufficient

for our attacks to work. Malleation functions can “overfit” an encryption scheme; for

example, one can define a trivial MaulΠplain such that for every possible input, MaulΠplain

simply outputs the set M ∪ {⊥}. Similarly, a plaintext malleation function can be

formulated even for schemes that are explicitly non-malleable, such as authenticated

encryption modes. The effectiveness of our attacks depends on both the malleability

features of the scheme, and the precision with which the malleation functions describe

them.

CTR and OFB mode. CTR and OFB modes use an ℓ-bit block cipher to implement a

stream cipher. The modes can therefore be described using using the functions above.

However, in the case where an explicit IV is transmitted with the ciphertext, we can

define a slightly more powerful malleation function that removes a multiple of ℓ bits

from the left side of the ciphertext (resp. plaintext). We can extend the functions for

tstream to support this capability by defining S as l∥r∥S, and requiring that l mod ℓ= 0.

(Plaintext malleation for OFB mode is identical, although ciphertext malleation differs

slightly).

CBC mode. In CBC mode encryption, an alteration to the ith ciphertext block will cause

meaningful alterations in plaintext block i+1 following decryption, while plaintext

block i will be replaced with pseudorandom output (excepting for the special case of the

Initialization Vector, i = 0). CFB is similar, except that changes to block i will emerge

in block i, while block i+1 will be replaced. To describe CBC, the function MaulΠCBC
plain

can be defined as outputting a list of every possible plaintext candidate that results

from such a malleation. In §2.8 we describe a more efficient encoding of this output.
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2.2.2 Theory Solvers and Model Counting

Solvers take as input a system of constraints over a set of variables, and attempt to

derive (or rule out the existence of) a satisfying solution. Modern SAT solvers generally

rely on two main families of theorem solver: DPLL [DP60; DLL62a] and Stochastic

Local Search [HS04]. Satisfiability Modulo Theories (SMT) solvers expand the language

of SAT to include predicates in first-order logic, enabling the use of several theory

solvers ranging from string logic to integer logic. Both SAT and SMT (which reduces to

SAT) are known to be NP-hard. Thus, these solvers can efficiently solve only a subset of

all possible formulae. Our prototype implementation uses a quantifier-free bitvector

(QFBV) theory solver. In practice, this is implemented using SMT with a SAT solver

as a back-end (in principle, our attacks can be extended to other theories, with some

additional work that we describe later in this section). As such, we will described our

basic algorithms using a simplified SMT notation over bitvectors of specified lengths.

For the purposes of describing our algorithms, we specify a query to the solver by the

subroutine SATSolve{(A1, . . . , AN) : G} where A1, . . . , AN each represent abstract bitvectors

of some defined length, and G is a constraint formula over these variables. Except

where explicitly mentioned, we assume that each variable A i represents a bitvector

of some specified length. The response from this call provides one of three possible

results: (1) sat, as well as a concrete satisfying solution (A1 . . . ,AN), (2) the distinguished

response unsat, or (3) the error unknown.

Model counting and Max#SAT. While SAT determines the existence of a single

satisfying assignment, a more general variant of the problem, #SAT, determines

the number of satisfying assignments. A variant known as #SMT generalizes model

counting to SMT [CDM17]. Since in this work we focus primarily on problems with

discrete solutions (e.g., formulae over boolean and fixed-size integer variables) the
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#SMT problem can simply be viewed as a slightly modified version of #SAT.

In the literature this problem is known as model counting [Val79b; GSS06; BL99;

BJP00; San+04; WS05; BDP03; Cha+15].

In this work we make use of a specific optimization variant of the model count prob-

lem, which was formulated as Max#SAT by Fremont et al. [FRS17]. In a streamlined

form, the problem can defined as follows: given a boolean formula φ(X ,Y ) over abstract

bitvectors X and Y , find a concrete assignment to X that maximizes the number of

possible satisfying assignments to Y .The formulation of Fremont et al. includes an

additional set of boolean variables Z that must also be satisfied, but is not part of the

optimization problem. We omit this term because it is not used by our algorithms.

Note as well that, unlike Fremont et al., our algorithms are not concerned with the

actual count of solutions for Y . We will make use of this abstraction in our attacks,

with realizations discussed in §2.3.2. Specifically, we define our main attack algorithm

in terms of a generic Max#SAT oracle that has the following interface:

Max#SAT(φ, X ,Y )→X

Fremont et al. provide an algorithm called MaxCount that approximately solves

the Max#SAT problem, using several approximate sampling and counting algorithms

as subroutines [CMV16a; Cha+14a; Cha+15]. Our main attack algorithm can be

implemented using MaxCount directly. However, using this algorithm in practice is

extremely computationally expensive. To address this, we develop a heuristic substitute

that substantially improves the efficiency of our attacks.
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2.2.3 Format Checking Functions

Our attacks assume a decryption oracle that, on input a ciphertext C, computes and

returns F(DecryptK (C)). We refer to the function F :M ∪ {⊥}→ {0,1} as a format checking

function. Our techniques place two minimum requirements on this function: (1) the

function F must be efficiently-computable, and (2) the user must supply a machine-

readable implementation of F, expressed as a constraint formula that a theory solver

can reason over.

Function descriptions. Our attacks employ SAT and SMT solvers. Because our

solver will ultimately need to reason over the implementation of F, we require that its

description be provided in a compatible form. For SAT solvers this typically implies

conjunctive normal form (CNF) or equivalent notation. SMT solvers allow a richer

description using a variety of first-order logic predicates, which may involve variable

types such as integers, real numbers and strings. Several industrial SMT solvers

additionally provide an interface that allows functions to be described in a high-level

languages such as Python. Although our techniques primarily rely on a SAT solver

as the back-end for our system, we employ Microsoft’s Z3 SMT solver [MB08] as our

primary user-facing interface, in part because it provides a more flexible interface

with support for various input formats. As a result, the description of F provided to

our tools can be given as a Python script, SMT-LIB file [BFT16], or even as a boolean

circuit description. Phan et al. [Pha+17] demonstrated techniques for deriving such

constraint systems automatically from high-level languages such as Java which could

be combined with our work.
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2.3 Constructions

In this section we present a high-level description of our main contribution: a set of

algorithms for programmatically conducting a format oracle attack. First, we provide

pseudocode for our main attack algorithm, which uses a generic Max#SAT oracle as its

key ingredient. This first algorithm can be realized approximately using techniques

such as the MaxCount algorithm of Fremont et al. [FRS17], although this realization

will come at a significant cost to practical performance. To reduce this cost and make

our attacks practical, we next describe a concrete replacement algorithm that can be

used in place of a Max#SAT solver. The combination of these algorithms forms the

basis for our tool Delphinium.

2.3.1 Main Algorithm

Algorithm 1 presents our main attack algorithm, which we name DeriveAttack. This

algorithm is parameterized by three subroutines: (1) a subroutine for solving the

Max#SAT problem, (2) an implementation of the ciphertext malleation function Maulciph,

and (3) a decryption oracle Odec. The algorithm takes as input a target ciphertext C∗,

constraint formulae for the functions Maulplain,F, and an (optional) initial constraint

system G0 that defines known constraints on M∗.

This algorithm largely follows the intuition described in §2.1. At each iteration, it

derives a concrete malleation string S using the Max#SAT oracle in order to find an

assignment that maximizes the number of solutions to the abstract bitvector M0∥M1.

It then mauls C∗ using this malleation string, and queries the decryption oracle Odec

on the result. It terminates by outputting a (possibly incomplete) description of M∗.

This final output is determined by a helper subroutine SolveForPlaintext that uses

the solver to find a unique solution for M∗ given a constraint formula, or else to produce
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a human-readable description of the resulting model. Our concrete implementation in

§2.8 uses the solver to enumerate each of the known and unknown bits of M∗.

Algorithm 1: DeriveAttack
Input: Machine-readable description of F,Maulplain; target ciphertext C∗; initial

constraints G0;
Output: M∗ or a model of the remaining plaintext candidates
Procedure:
i ← 1;
do

Define φ(S, M0∥M1) as
[︁
G i−1(M0)= 1 ∧

G i−1(M1)= 1 ∧ F(Maulplain(M0,S))= 0 ∧ F(Maulplain(M1,S))= 1
]︁
;

S← Max#SAT (φ, S, M0∥M1);
if S ̸= ⊥ then

r←Odec(Maulciph(C∗,S));
Define G i(M) as

[︁
G i−1(M)∧ (F(Maulplain(M,S))= r)

]︁
;

i ← i+1;
while S ̸= ⊥;
return SolveForPlaintext(G i);

Theorem 2.3.1 Given an exact Max#SAT oracle, Algorithm 1 maximizes in expectation

the number of candidate plaintext messages ruled out at each iteration.

Remarks. Note that a greedy adaptive attack may not be globally optimal. It is

hypothetically possible to modify the algorithm, allowing it to reason over multiple

oracle queries simultaneously (in fact, Phan et al. discuss such a generalization in their

side channel work [Pha+17]). We find that this is computationally infeasible in practice.

Finally, note also that our proof assumes an exact Max#SAToracle. In practice, this

will likely be realized with a probably approximately correct instantiation, causing the

resulting attack to be a probably approximately greedy attack.
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2.3.2 Realizing the Max#SAT Oracle

Realizing Algorithm 1 in practice requires that we provide a concrete subroutine that

can solve specific instances of Max#SAT. We now address techniques for approximately

solving this problem.

Realization from Fremont et al. Fremont et al. [FRS17] propose an approximate

algorithm called MaxCount that can be used to instantiate our attack algorithms. The

MaxCount algorithm is based on repeated application of approximate counting and

sampling algorithms [CMV16a; Cha+14a; Cha+15], which can in turn be realized using

a general SAT solver. While MaxCount is approximate, it can be tuned to provide a

high degree of accuracy that is likely to be effective for our attacks. Unfortunately, the

Fremont et al. solution has two significant downsides. First, to achieve the discussed

bounds requires parameter selections which induce practically infeasible queries to the

underlying SAT solver. Fremont et al. address this by implementing their algorithm

with substantially reduced parameters, for which they demonstrate good empirical

performance. However, even the reduced Fremont et al. approach still requires numer-

ous calls to a solver. Even conducting a single approximate count of solutions to the

constraint systems in our experiments could take hours to days, and such counts might

occur several times in a single execution of MaxCount.

A more efficient realization. To improve the efficiency of our implementations, we

instead realize a more efficient optimization algorithm we name FastSample. This

algorithm can be used in place of the Max#SAT subroutine calls in Algorithm 1. Our

algorithm can be viewed as being a subset of the full MaxCount algorithm of Fremont et

al.

The FastSample algorithm operates over a constraint system φ(S, M0∥M1), and re-

turns a concrete value S that (heuristically) maximizes the number of solutions for the
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bitvectors M0, M1. It does this by first conjecturing some value s, and sampling a series

of 2s low-density parity hash functions of the form H : {0,1}n → {0,1} (where n is the

maximum length of M0 or M1). It then modifies the constraint system by adding s such

hash function constraints to each of M0, M1, and asking the solver to find a solution to

the modified constraint system. If a solution is found (resp. not found) for a specific

s, FastSample adjusts the size of s upwards (resp. downwards) until it has found the

maximal value of s that produces a satisfying assignment, or else is unable to find an

assignment even at s = 0.

The goal of this approach is to identify a malleation string S as well as the largest

integer s such that at least 2s solutions can be found for each of M0, M1. To improve

the accuracy of this approach, we employ a technique originally pioneered by Gomes et

al. [GSS06] and modify each SAT query to include multiple trials of this form, such

that only a fraction δ+1/2 of the trials must succeed in order for S to be considered

valid. The parameters t,δ are adjustable; we evaluate candidate values in §2.10.

Unlike Fremont et al. (at least, when implemented at full parameters) our algorithm

does not constitute a sound realization of a Max#SAT solver. However, empirically

we find that our attacks using FastSample produce query counts that are close to

the optimal possible attack. More critically, our approach is capable of identifying

a candidate malleation string in seconds on the constraint systems we encountered

during our experiments.

2.3.3 Additional Algorithms

Our algorithms employ an abstract subroutine AdjustSize that is responsible for

updating the conjectured set size s in our optimization loop:

(bcontinue, s′, Z′)← AdjustSize(bsuccess,n, s, Z)
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Algorithm 2: FastSample
Input: φ a constraint system over abstract bitvectors S, M0∥M1; n the

maximum length of (each of) M0, M1; m the maximum length of S; t
number of trials; δ fraction of trials that must succeed

Output: S ∈ {0,1}m

Procedure:
(bcontinue, s, Z)← AdjustSize(False,n,⊥,ε);
// define t symbolic copies of the abstract bitvectors M0,M1, and a

new constraint system φt

{M1,0, . . . , Mt,0}← M0;
{M1,1, . . . , Mt,1}← M1;
Define φt(S, {M1,0, . . . , Mt,0}, {M1,1, . . . , Mt,1}) as φ(S, M1,0∥M1,1)∧·· ·∧φ(S, Mt,0∥Mt,1);
while bcontinue do

// Construct 2t s-bit parity constraints
for i ← 1 to t do

Hi,0 ← ParityConstraint (n, s);
Hi,1 ← ParityConstraint (n, s)

// Query the solver
S← SATSolve{(S, {M1,0, . . . , Mt,0}, {M1,1, . . . , Mt,1}) :

∃R0 ⊆ [1, t] : |R0| ≥ ⌈(0.5+δ)t⌉,∀ j ∈R0 :H j,0(M j,0)= 1 ∧
∃R1 ⊆ [1, t] : |R1| ≥ ⌈(0.5+δ)t⌉,∀ j ∈R1 :H j,1(M j,1)= 1 ∧
φt(S, {M1,0, . . . , Mt,0}, {M1,1, . . . , Mt,1})};

if S== unsat then
bsuccess =False;

(bcontinue, s, Z)← AdjustSize(bsuccess,n, s, Z);
return S

The input bit bsuccess indicates whether or not a solution was found for a conjectured

size s, while n provides a known upper-bound. The history string Z ∈ {0,1}∗ allows the

routine to record state between consecutive calls. AdjustSize outputs a bit bcontinue

indicating whether the attack should attempt to find a new solution, as well as an

updated set size s′. If AdjustSize is called with s =⊥, then s′ is set to an initial set

size to test, bcontinue =True, and Z′ = Z. By maximizing the conjectured set sizes, the

attack elicits a malleation string at each iteration which maximizes the number of

messages eliminated in expectation. As such, this algorithm is greedy, optimizing given
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the constraints at each iteration to discover locally optimal malleations

The subroutine ParityConstraint(n, l) constructs l randomized parity constraints

of weight k over a bitvector b = b1b2 . . .bn where k ≤ n denotes the number of bit indices

included in a parity constraint (i.e. the parity constraints come from a family of

functions H(b)=⨁︁n
i=1 bi ·ai where a ∈ {0,1}n and the Hamming weight of a is k).

Finally, to output intermediate and finalized results from the solver, we use a

widely-known technique in SAT solving to iteratively identify symbolic bits which are

entirely constrained to either 0 or 1. For completeness, we describe this technique as

FindKnownBits in Algorithm 3.

Algorithm 3: FindKnownBits
Input: Constraint formula G, sat oracle SATSolve, bv an n bit length bitvector
Output: m ∈ {0,1,∗}n where mi = b for b ∈ {0,1} if the bit vector bv at position i is

uniquely constrained by G [i.e. ¬∃ model v such that vi = 1−b and
G(v)= 1] Otherwise mi =∗

Procedure:
m := 0n;
for i ← 0 to n do

one,_= SATSolve({bv} : G∧ [bvi ̸= 1]);
zero,_= SATSolve({bv} : G∧ [bvi ̸= 0]);
if one is unsat then

m[i]= 1;
else if zero is unsat then

m[i]= 0;
else

m[i]=∗;

return m;

2.4 Proof that DeriveAttack is Greedy

In this section, we demonstrate that our approach implements a locally-optimal (also

known as “greedy”) algorithm at each iteration of an attack, given a Max#SAToracle in
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place of probabilistic subroutines. This idealized model is used to clarify proving; in

practice, the probabilistic and approximate nature of these subroutines allows us to

pragmatically evade the inherent algorithmic complexity of Max#SAT.

2.4.1 Preliminaries

We prove greedy-optimality by defining optimality with respect to profitability, and

showing that at each iteration this function is maximized in expectation. Recall #SAT,

an algorithm which given a vector of boolean variables and a constraint formula over

those variables returns the number of assignments to the variables satisfy the formula.

DeriveAttack does not directly use a #SAT oracle, but we use it in this proof as nota-

tional shorthand. Max#SAT(X ,Y ,G) given boolean variable vectors X ,Y and constraint

formula G provides an assignment for X which satisfies G, maximizing the number of

satisfying assignments to Y . That is, no other satisfying assignment for X induces a

greater number of satisfying assignments for Y subject to G. Also, recall profitability

ψ(G i−1,G i), the number of candidate messages eliminated via additional constraint

added between G i−1 and G i. This is equal to #SAT((M0, M1),G i−1)−#SAT((M0, M1),G i).

The new constraint depends upon the Odec oracle result, and so we will seek to maximize

it in expectation quantified over the possible oracle responses {0,1}. In expectation,

profitability is equal to the number of candidate messages eliminated by each possible

oracle response multiplied by the probability the oracle provides that result. As the

true plaintext message is uniformly sampled, this probability is equal to the number

of messages not eliminated by the respective oracle result. Similarly, this approach

generalizes to non-uniform distributions using weighted counting.

Let M be the distribution of plaintext messages of some fixed length n. We consider

the uniform message distribution, but non-uniform distributions are equivalently

supported through weighted model counting (which reduces to unweighted model
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counting efficiently) [Cha+15]. The message length is known to the attack algorithm.

Let Odec be the decryption oracle. DeriveAttack minimizes the number of queries

to the oracle, making one per greedy iteration. One query must be made per iteration

as the oracle provides the only available information about the target plaintext; any

other computation in an iteration is necessarily speculative.

Let G0 be the initial constraint system, a conjunction of the following constraints

along with any optional auxiliary constraints:

• F(MaulplainM0,S)= 0

• F(MaulplainM1,S)= 1

G0 primarily enforces that each assignment S to S malforms all assignments to M0

such that they are invalid under the format check F, and simultaneously malforms

all assignments to M1 such that they remain or become valid. We assume that F

and Maulplain are well-defined, and as such each assignment S indexes (potentially

non-uniquely) some partition of the remaining valid assignments to M0 and M1. The

additional constraints may include weighting the message distribution, or arbitrary

additional requirements for the generated attack.

Let G i i > 0 be defined as G0 conjoined with i additional constraints. These con-

straints are of the form

F(Maulplain(M0,Si))= F(Maulplain(M1,Si))=Odec(Maulciph(C,Si))

with Si some assignment to S at each iteration i. This models updating the constraint

formula to reflect the result of an Odec oracle query. We refer to the constraint added at

iteration i as iterSi .
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2.4.2 Proof

The proof will proceed using strong induction. However, the strong induction case

parallels the base case with minimal differences. Thus, the base case will be explored

thoroughly, and then in the strong induction case the aforementioned differences will be

highlighted and considered. Finally, the case when Max#SATaborts will be considered.

2.4.2.1 Base Case

Isomorphism of concatenation to multiplication: As M0 and M1 partition the remaining

candidate messages,

#SAT(M0∥M1,G0)= (#SAT(M0,G0))(#SAT(M1,G0))

As each element of the combined count can be bijectively mapped to one choice of

assignment to M0 and one choice of assignment to M1.

As F is well-defined, no satisfying assignment for M0 is also a satisfying assignment

for M1. The disjunction of satisfying assignment constitutes all satisfying assignments

for the plaintext message. Consider the size of this disjunction to be x ≤ 2n. Note that

M0 and M1 must each have at least one satisfying assignment for the formula to be

satisfiable, and at most x−1 satisfying assignments.

Max#SAT(S, M0∥M1,G0) produces an assignment S for S which maximizes the

number of assignments to M0∥M1, thus maximizing the previously described product.

Maximizing such a product of two integers in the range [1, x) which sum to x occurs

when each integer is as close to x
2 as possible. Thus, S induces as close as possible to x

2

satisfying assignments to each of M0 and M1.

Next, let p = min(#SAT(M0,G0),#SAT(M1,G0))
x . p then represents without loss of generality

the fraction of x which the smaller of M0, M1 contains. As the message distribution
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is uniform, p is the likelihood that the plaintext message lies in the smaller set of

satisfying assignments, in which case (1− p)x messages will be ruled out. Similarly, the

larger set of satisfying assignments contains the plaintext message with probability

1− p, and in that case px messages will be eliminated. In expectation, the number of

eliminated messages:

p(1− p)x+ (1− p)px = 2xp(1− p)

p ∈ (0,1) as both sets of satisfying assignments are non-empty. This quadratic expression

is maximized at p = 0.5, consistent with maximizing the product. Let G1 =G1 ∧ iterS.

We seek to demonstrate that without consulting Odec (as only one query is allowed

per iteration, to minimize oracle queries), S represents the greedy decision: maximizing

the number of eliminated candidates (and thus profitability) in expectation.

Suppose seeking contradiction that some S′ ̸=S exists for which G1
′ =G0 ∧ iterS′ and

ψ(G0,G1
′) >ψ(G0,G1). Define p′ similarly, the fraction represented by the smaller of

the two satisfying assignment sets. p′ > p by necessity, as p′ must be closer to 0.5. This

implies that the alternate assignment to S induces a more even (close to 1
2 ) division of

satisfying assignments amongst M0 and M1. However, this necessarily implies that S′

induces a larger number of assignments to M0∥M1, which violates the correctness of

Max#SAT. As such, a contradiction is reached, and so in the base case, profitability is

maximized in expectation. Note that nothing in the preceding reasoning specifically

relied on the size x or the auxiliary contents of G0.

2.4.2.2 Strong Induction

Now, assume that for some number of iterations I, DeriveAttack generated an assign-

ment for S which eliminated the maximal number of messages in expectation. G I

represents the constraint system at this iteration of the attack.
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To complete induction for iteration I +1, simply observe that the proof for the base

case allowed arbitrary additional constraints within G0, and did not rely on the overall

number of satisfying assignments x. As such, the reasoning is entirely compatible in

the inductive case, replacing G0 with G I .

2.4.2.3 Max#SAT Aborts

Max#SATmay abort. This implies no satisfying assignment for X or Y can be found,

implying either that the formula is inconsistent or that Maulplain cannot induce a differ-

entiation in the format check F, meaning no further messages may be eliminated. In

either of these cases, DeriveAttack should abort, as no further progress can be made.

2.5 The Greedy Algorithm can be Optimal

In the following proof sketch, we justify our greedy algorithm by demonstrating exis-

tence of a simple format and malleation function pair for which the greedy attack is

optimal. The defined format and malleation pair serves as an existence proof. The

intuition behind this format is that each possible query leaks one bit of information by

diving the remaining candidate message space in half, every query must be made to

uniquely identify the plaintext, and repeat queries do not provide any information what-

soever. As such, both the greedy and optimal attacks are clear, and as is demonstrated,

equivalent.

Lemma 2.5.1 For the format F and malleation Maulplain pair (FParity,Truncation), the

greedy attack is optimal.
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2.5.1 Preliminaries

Consider the message distribution of uniform k-bit strings. The size of this message

space is then 2k. Consider the format check FParity to be the bitwise parity function,

which maps bitstrings of positive length to {0,1}. A parity value of 1 corresponds to

passing the format check, and parity 0 to failing. We will consider the parity of strings

of less than 1 bit in length to be undefined.

We will define a plaintext malleation function that performs simple truncation

from the right side (the least significant bits) of the plaintext. Such a function can

be constructed for stream ciphers, by simply performing the identical truncation on a

ciphertext. We only consider right-truncations because left-truncations cause a stream-

cipher message to be misaligned with the keystream, leading to unpredictable results

from which the attack can extract no information. The malleation string S represents

the truncation instruction as a non-negative integer that indicates how many bits will

be removed. Truncation values that exceed the message length result in undefined

output.

For a given malleation string S (truncation value), let M0 be the subset of plain-

texts where which, ∀M ∈M0, it holds that FParity(Maulplain(M,S))= 0, and let M1 be the

equivalent set where the output of the check is 1. Recall profitability ψ(G i−1,G i) from

the attack definition, the number of messages “ruled out” at each iteration. In this

proof sketch, we operate over a message distribution rather than a single concrete

message, and as such expected profitability is used for average-case analysis. In this

formulation, the most profitable malleation strings in expectation are those which

divide the candidate message evenly: where approximately as many messages are in

M0 as in M1.

Let M∗ be the a target plaintext message, with FParity(M∗) = 1 and C∗ its bitwise
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stream cipher encryption.

2.5.2 Observations

The 0-length truncation will always return 1 (parity check success), as the original

message is defined to be validly formatted and is left unchanged. So, we need only

consider the other k−1 truncations, those of non-zero length (as you cannot drop k or

more bits from a k-bit message).

Assuming the underlying message is uniformly sampled from the k-bit message

space, each truncated bit will change the parity with 1
2 probability. The length-1

truncation then will result in two message distributions of equal size: one where the

truncated bit was 1 and the other where it was 0. If the truncated bit was 1, necessarily

the parity of the remaining bits is 0, thus the format check over these will fail, and

otherwise the parity of the remaining bits is 1 and the format check will pass. The

oracle query on this truncation then uniquely determines the truncated bit of M by

revealing the parity of the remaining bits.

These message distributions are of size 2k−2 each (not k − 1: the un-truncated

unknown bits must have parity 0 or 1 as determined by the contents of the truncated

bit), are disjoint, and under union form the entire 2k−1 valid message space.

Truncating additional bits in the first query has a similar effect. Consider truncating

two bits in the first query: rather than two cases, there are four (the four values of

two truncated bits): two cases which leave the un-truncated bits valid (unchanged

parity), and two which flip parity. A partition is formed over messages ending in 01 or

10 and messages ending in 00 or 11, and these two message classes are of equal size

2k−3: parity 1 messages of length k−2 and parity 0 messages of length k−2.

Based on the previous definition of profit, the one- and two- bit truncations are of
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equal profitability. It’s clear that longer truncations follow the same pattern inductively,

each creating a partition where both sides consist of twice as many classes of messages

where the classes themselves are 1
2 the size. If all possible truncations are of the

same profitability, it must be the case that any choice of truncation is greedy (highest-

profitability-first) for the first query in the attack.

2.5.3 The Optimal Attack

There are k−1 possible truncations. Repeating a truncation provides information

which the attack already knows (the parity of the un-truncated bits) and therefore no

optimal attack can repeat a truncation.

Assume some optimal (in terms of query count) attack makes less than k−1 queries.

Necessarily, some truncation length must be left un-queried. Let that length be u. The

attacker must then know the parity of all subsets of bits of length 1 up to u−1 from the

left. If they know the parity of the leftmost bit, they know the value of the bit. If they

know the leftmost bit, and they know the parity of the two leftmost bits, they know the

two leftmost bits. Inductively, the attacker knows all bits up to but not including u.

The attacker has also made queries on truncations of length u+1 up to k−1 (if there

are any, u might equal k−1). Thus, they know the parity of substrings starting from

bit u (e.g. u through u+1, u through u+2, ...). Incrementally inducting up to k, the

attacker knows all bits from u+2 to k (if any). Importantly, the only information the

attacker lacks is the parity of the substring of bits from 1 to u, which prevents them

from uniquely constraining bits u and u+1. They know the parity of these two bits,

and as such only two of the possible four two-bit strings are valid candidates, but there

is insufficient information to differentiate them.

The above analysis has edge cases at very small values of k. For example, at k = 1

or k = 2, it’s unclear where the un-queried index would be. However, fewer than k−1
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queries in those cases is zero queries, from which no information can possibly be

extracted. k = 1 is trivial as M must have parity 1, and k = 2 clearly has two candidate

messages before any queries are made. At k = 2, the only valid query is to drop the first

bit. The result of this query uniquely constrains the message.

Therefore, after any k − 2 optimal queries, the attack is left with two possible

messages, and thus has not uniquely constrained the message space. This attack then,

is incomplete, and thus the assumption that an optimal attack with fewer than k−1

queries exists is faulty.

It is clear that querying the un-queried truncation at u would finish the attack,

uniquely constraining the message bits in k−1 queries by revealing the parity of the bit

at u. Thus, any optimal attack must use at least k−1 queries, and an optimal attack

exists using k−1 queries.

2.5.4 The Greedy Attack

As was shown, the optimal attack makes a truncation query at each available length

for a total of k−1 queries. Order is irrelevant as any k−2 optimal queries allow the

last query to uniquely constrain the message. In the observations considered prior,

initially, all truncations are of equal profitability, and thus the greedy attack could

select any of them.

In order to assert that the greedy attack is optimal then, it is sufficient to show that

any query made by the greedy attack leads to a state wherein the greedy attack will

not make a redundant query. Once k−1 non-redundant queries are made, an optimal

attack has necessarily been executed.

The profitability of a redundant query is zero at any stage of the attack. This

is because, having previously made a given query, the greedy attack excludes from
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consideration all messages which differ from the oracle at that truncation length. It

does so though iterative constraints which assert that the candidate messages behave

as the oracle did given a particular malleation. Thus, any redundant query will

reject all candidate messages if the oracle returned false on that malleation, or will

accept all candidate messages if the oracle returned true. Either way, no messages

are differentiated, and so no redundant query can be selected in the greedy attack.

Therefore, the greedy attack is optimal.

2.5.5 Discussion

In this simple scenario, the greedy attack is optimal. This can be clearly shown in that

all available malleations are either optimal or completely redundant. In real format

checks, parity checks sometimes occur, but often more complicated systems of con-

straints are expressed such as range statements, conditionals, or regular expressions.

2.6 The Greedy Algorithm can be Suboptimal

In the following proof sketch, we provide a counterexample to the universal optimality

of the greedy algorithm, as both illuminating analysis of limitations of the attack

algorithm and to highlight opportunity for future work. Our greedy attack algorithm

operates over a pair consisting of a format checking function and a malleation function,

and as such an existence proof outlining the possibility of non-optimality requires

definition of each element of such a pair. Here the format check F will be defined as

a conditional function given below, and the malleation Maulplain as the composition of

truncation and exclusive-OR. Thus, The attack algorithm then can flip any subset of

bits, and truncate the message down to any non-zero length.
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F∨(M)=
{︄

Parity(M0..L−(k+1)) if ML−(k+1)..L = cookie

Padding(M) otherwise

This format check is somewhat contrived to “lead astray” the greedy algorithm.

Greedy algorithms are non-optimal when a locally non-optimal choice enables higher-

efficiency (optimality, or profitability per query) choices later in execution. In order

to realize this disparity, we define F∨ conditionally, where one case applies a parity

format check if a cookie value is matched, and the other simply applies a PKCS7-like

padding check if the cookie value is not matched. Guessing the cookie value is locally

non-optimal, but then the enabled attack against parity is more efficient than the

greedy attack against the padding format on average.

Lemma 2.6.1 For the format and malleation pair (F∨,Truncation◦Exclusive-OR), the

greedy attack is not optimal.

2.6.1 Preliminaries

Consider the message distribution of uniform L-bit strings. The size of this message

space is then 2L. Let kl = L and we require that 2k > l. We will consider l chunks of size

k for notational simplicity when analyzing this distribution.

Let the encryption scheme be a stream cipher which uses ⊕ (exclusive-OR) to mix

the message with the keystream, and assume it operates “left to right” (that is, we

refer to the beginning of the keystream and the message as the “left side”). Consider

the malleation in question to be arbitrary composition of truncation and exclusive-

OR, allowing the attack algorithm to flip any subset of bits of the message. This is a

commonly available malleation for unauthenticated stream ciphers (or those where

authentication can be forged, as is the case in Galois-Counter Mode with nonce reuse).

Although truncated messages are potentially accepted by the format, the length of the
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message is leaked by the known ciphertext and as such the initial candidate message

space excludes shortened messages.

Recall profitability ψ(G i−1,G i) from the attack definition, the number of messages

“ruled out” at each iteration. In this proof sketch, we operate over a message distribution

rather than a single concrete message, and as such expected profitability is used for

average-case analysis.

Let M be the real plaintext message, and C its bitwise stream cipher encryption.

We allow M to be any L-bit string, not just those which are valid under the predicate F.

When checking a message, F∨ considers the leftmost k+1 bits, comparing them to

some per-instance randomly sampled “cookie” value. Although the attack algorithm

has a full description of the format check, extending the model of the oracle to contain

private randomness is in no way unaligned with reality. If the top k+1 bits match

this cookie, the remaining L− (k+1) bits are checked using a bitwise parity check.

Otherwise, the entire L-bit message is checked with More intuitive descriptions of each

branch of the conditional format check are provided next.

2.6.1.1 Parity Check

This check evaluates the remaining bits after any truncations (at least 1 bit, per the

format definition), and returns the parity of those bits. Parity 1 is accepted by the

format, parity 0 is rejected. As noted in the greedy-optimal analysis, this format in

combination with truncation can leak 1 bit of information per query, allowing efficiency

of message discovery linear in the number of bits.

2.6.1.2 Padding Check

This check evaluates L bits in k-bit chunks. As such, any truncation renders a message

invalid. The message must be padded with a number of k-bit chunks matching the
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value of the last chunk. This is very similar to PKCS7, but chunks are not required

to be 8 bits. Requiring 2k > l ensures that the padding can stretch over the entire

L-bit message. Attacking this format involves malleating chunks of the underlying

message to become valid padding, thus creating an exclusive-OR equation with one

unknown (which thus can be immediately solved). This requires guessing the correct

exclusive-OR malleation string to flip bits in the message to become valid padding. As

will become clear, guessing a padding chunk will be more profitable than guessing the

cookie value, but enable a less efficient attack than that allowed once the cookie value

is discovered in the optimal attack.

2.6.2 Observations

Note that we will primarily consider truncations off the right side of the known cipher-

text as this will allow the remaining bits to decrypt as expected. If the keystream is

pseudorandom, truncation off the left will misalign the key and ciphertext streams,

causing unpredictable bits to arise in the resulting plaintext. As such, the attack

algorithm would be unable to differentiate oracle results on such queries from oracle

results on random strings, and thus these queries yield trivial information about the

target plaintext.

2.6.3 The Optimal Attack

The cookie value is embedded in a conditional as part of the description of the format

check provided to the attack algorithm. This analysis still holds in the case that

this value is initially unknown to the attack algorithm and it has to guess a k+1-bit

exclusive-OR string to transform the plaintext into the cookie value in a sequence of

queries, but that assumption complicates the model of the format oracle and as such is

elided.
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Thus, the optimal strategy is to truncate the known ciphertext to k+2 bits (any non-

zero truncation leaving at least one non-cookie bit is equally effective, but complicates

the attack slightly) and guess the plaintext underlying the first k+1 bits. As the cookie

is known, and the exclusive-OR malleation can be controlled, this requires at most

2k+1 queries, or 2k in expectation. Once a query passes the format check, the cookie is

discovered.

However, it may be the case that the parity of the un-truncated, non-cookie bit(s)

is 0, which would cause a false oracle query result for any guess of the cookie. By

querying each guess twice, once with the un-truncated bit(s) untouched, and once with

a single un-truncated bit flipped (exclusive-OR with 0 or 1, respectively), the cookie

will be discovered in 2k+1 queries in expectation.

Then, the remaining L− (k+1) bits can be discovered one query at a time by trun-

cating to incrementally increasing sizes, at which point each query result describes

whether the included bit did or did not change the parity of the string. This completely

compromises the plaintext one bit at a time.

Before the cookie is known, the profitability of making a guess is 2L−(k+2), as each

pair of queries (flipping the un-truncated bits, and not) eliminates the entire class of

messages that would have become valid had the guess been correct (which is of size

2L−(k+1)). After the cookie is known (which also includes uncovering the un-truncated

bit) the profitability is half of the remaining messages at each step, maximizing prof-

itability in expectation. The optimal attack in expectation will take 2k+1 queries to

guess the cookie and the un-truncated bit, and then L− (k+2) for the remaining bits.

Thus, expected profitability ≈ 2L−(k+2) and expected queries = 2L−(k+1) +L− (k+2).

53



CHAPTER 2. DELPHINIUM

2.6.4 The Greedy Attack

On the other hand, the greedy attack strategy simply seeks to maximize the profitability

of the malleation selections. By attempting to guess a k-bit exclusive-OR string which

transforms the last k bits into a valid padding chunk (the k-bit representation of 1, for

example), and then proceeding chunk-wise through the l chunks of the messages, the

greedy attack will take in expectation l(2k−1) queries. That is, each chunk requires 2k−1

guesses in expectation, and the attack must guess all l chunks in this way, malleating

them via exclusive-OR into increasingly long valid paddings.

The greedy attack will follow this attack path because doing so differentiates a class

of messages which match the guess of the last k bits from the remaining which have

some other last k bits. As the message is uniform, the number of eliminated messages

will likely be the smaller class, of size 2L−k, although with some probability (2−k) it will

be the larger class (if the guess was correct). Thus the profitability in expectation is

exp. profitability= (2−k)(2L − (2L−k))+ (1−2−k)(2L−k)

The greedy expected profitability exceeds the optimal expected profitability for all

L > 0, and thus the greedy attack will attack the padding scheme as described. As the

attack progresses, the profitability is exponentially reduced as some number of bits

have become known. However, the greedy attack will not switch to attacking the cookie

value, because the profitability of a query guessing the cookie is also reduced by these

known bits. They decrease at the same exponential rate (each known bit halving the

size of the candidate message space) and as such the padding attack remains more

profitable.

The greedy attack must guess each k-bit chunk and so:
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exp. queries= (2k−1)l

The expected number of queries for the greedy attack strictly exceeds the expected

number of queries for the optimal attack for some choices of L and k. As such, there

exists a configuration for which the greedy attack is not optimal.

2.6.5 Discussion

Although this particular format may seem contrived, conditionals in format checks are

not rare. Many formats contain headers which define how the remaining message will

be processed; examples include indicators used for compression algorithm selection or

format version [RP; Pfe03].

2.6.5.1 Edge Cases

There are numerous edge cases due to the conditional nature of the format check.

However, as this is an existence proof, many of them can be mitigated through selection

of k, L, and l (the selection of any two fixes the third) to reduce the probability and/or

impact of the edge case. These cases are summarized below, regardless.

If the two formats overlap, i.e. the cookie bits are also part of a validly padded

message, the implication of an oracle result can be unclear. However, by truncating

when attacking the cookie bits, the complications of this for the optimal attack are

mitigated. The only possible true result from the oracle occurs when the cookie is

correct and the un-truncated is 1. Additionally, this has no effect on the greedy attack.

The correct guess for malleating the leftmost bits will simply be to exclusive-OR them

with zeroes. Finally, this occurs when the cookie values is all zeros, which occurs with

probability 2−(k+1), so its effect on average-case analysis is minimal.
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Another possibility of overlap is that the message is already validly padded and the

first k+1 bits are not already the cookie value. This occurs with probability slightly

greater than 2−k. The optimal attack is unaffected due to the truncation strategy. The

greedy attack is somewhat affected in that malleating the last k bits will result in a

valid padding in up to two ways: leaving the bits unchanged, and whatever transforms

the bits to a k-bit representation of 1. Thus, the greedy attack in some cases gains less

information when querying on an exclusive-OR which leaves padding bits unchanged.

Not only does this mean that the greedy attack will de-prioritize such malleations,

it also means that in this somewhat rare case the greedy algorithm is at least as

inefficient as in the common case.

Alternatively, The first k+1 bits of the message may be equal to the cookie value.

With a uniform message and a k+1-bit cookie, this occurs with probability 2−(k+1).

The optimal attack will be unaffected; the correct guess will not malleate these bits.

However, the greedy attack is potentially affected. An oracle query on an incorrect

guess attempting to malleate the last k bits into may return true if the parity of the

message bits is 1, even if the last k bits were not transformed to correct padding. This

case degrades the expected profitability of the greedy attack somewhat (upper-bounded

by (2L−(k+1))(2−(k+1))), the class of messages which cannot entirely be ruled out times

the probability of this edge case), but as k grows with some fixed l this bound shrinks

proportionately to the overall profitability.

Finally, if a combination of these events occur, the complications are less clear.

However, while events are not entirely independent, the probability of coincidence is

roughly 2−((k+1)k), which does not significantly affect average-case analysis for at least

some k.
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2.7 Realizing Plaintext Weight Functions

As discussed in §2.3, our basic attack algorithm is designed to identify the largest subset

of messages to be eliminated at the ith query. From an optimization perspective, this

strategy embeds a critical assumption: namely, that every valid plaintext admitted by

G i is equally likely, and thus the most efficient path to finding M∗ is to simply eliminate

as many messages as possible, without regard to message “quality.”

This approach can produce counterintuitive results in practice. One example man-

ifests in our attacks on the PKCS #7 encryption padding scheme [Kal98], which we

discuss in §2.10. In this format, messages may be padded with up to P bytes of padding.

If our target is a valid ciphertext C∗ in which F(M∗)= 1, then plaintext candidates with

P = 1 bytes of padding will be 28 times as common as candidates with P = 2 bytes of

padding, and so on. Since our attack strategy is optimized to eliminate the largest

subset of messages first, experiments that eliminate longer messages will tend to domi-

nate over those that eliminate short messages. A practical result is that our attack

algorithm will “assume” that short padding is more likely than longer padding, and

will focus on experiments that make sense based on this assumption. Such a strategy

makes sense if a typical M∗ is truly 2112 times more likely to have P = 1 than to have

P = 15. However, such a distribution may not reflect the typical distribution of messages

in a real system.

Approximations with plaintext weight. To address this assumption, our attack algorithm

can be updated to weight plaintext candidates according to some formula provided by

the user. This information can be encoded via an abstract plaintext weighting function

W : M→ {0, . . . ,B} defined with respect to some constant B, where W(M) → A defines

the fractional weight A
B of a given plaintext M. A custom weighting function can be

developed, for example, to encode the assumption that all PKCS #7 padding lengths
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are equally likely. Returning to our padding example, a user might design W to ensure

that candidates of every possible padding length are equally valid.

To apply this weighting information to the attack, we can sample a fresh universal

hash function H : {0,1}m → {1, . . . ,B} for each trial, and extend the solver query with the

following additional constraint term constructed over M0, M1:

H(M0)≤W(M0) ∧ H(M1)≤W(M1)

This formulation allows the weighting function to arbitrarily reduce the number of

satisfying solutions for any possible class of messages. It is easy to see that our basic

attack algorithm is equivalent to using a trivial weighting function where ∀M ∈M it

holds that W(M)= B.

2.8 Prototype Implementation

We now describe our prototype implementation, which we call Delphinium. We designed

Delphinium as an extensible toolkit that can be used by practitioners to evaluate and

exploit real format oracles.

2.8.1 Architecture Overview

Figure 2.3 illustrates the architecture of Delphinium. The software comprises several

components:

Attack orchestrator. This central component is responsible for executing the core

algorithms of the attack, keeping state, and initiating queries to both the decryption

oracle and SMT/SAT solver. It takes the target ciphertext C∗ and a description of the

functions F and Maulplain as well as the attack parameters t,δ as input, and outputs the

recovered plaintext.
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SMT/SAT solver. Our implementation supports multiple solver frameworks (e.g.

STP [Gan18] and Z3 [MB08]) via a custom compatibility layer that we developed for our

tool. To improve performance, the orchestrator may launch multiple parallel instances

of these solvers.

In addition to these core components, the system incorporates two user-supplied

modules, which can be customized for a specific target:

Ciphertext malleator. This module provides a working implementation of the mal-

leation function MaulΠciph. We realize this module as a Python program, but it can be

implemented as any executable compatible with the expected interface. The inter-

face requires input of a ciphertext and a malleation string, with output the mauled

ciphertext.

Target interface (shim). This module is responsible for formatting and transmitting

decryption queries to the target system. It is designed as a user-supplied module in

recognition of the fact that this portion will need to be customized for specific target

systems and communication channels.

As part of our prototype implementation, we provide working examples for each of

these modules, as well as a test harness to evaluate attacks locally.

2.8.2 Implementation Details

Realizing our algorithms in a practical tool required us to solve a number of challenging

engineering problems and to navigate limitations of existing SAT/SMT solvers.

Test Harness. For our experiments in §2.10 we developed a test harness to implement

the Ciphertext Malleator and Target Interface shim. This test harness implements

the code for mauling and decrypting M∗ locally using a given malleation string S.
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Figure 2.3: Architecture of Delphinium.

Low-density parity constraints. Our implementation of model counting requires

our tool to incorporate 2t s-bit distinct parity functions into each solver query. Each

parity constraint comprises an average of n
2 exclusive-ORs (where n is the maximum

length of M∗), resulting in a complexity increase of tens to hundreds of gates in our

SAT queries. To address this, we adopted an approach used by several previous model

counting works [Zha+16; Erm+14]: using low-density parity functions. Each such

function of these samples k random bits of the input string, with k centered around

log2(n). As a further optimization, we periodically evaluate the current constraint

formula G i to determine if any bit of the plaintext has been fixed. We omit fixed bits

from the input to the parity functions, and reduce both n and k accordingly.

Implementing AdjustSize. Because SAT/SMT queries are computationally expensive,

our algorithms can benefit from an optimization strategy that minimizes the number

of sequential queries required to maximize the value s.

One optimization is to use a logarithmic binary search procedure to increase (resp.

decrease) s. This is intuitive because the other problems should be obviously satisfiable
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or obviously unsatisifiable at the extremes. Thus, if execution times peak around the

cutoff, linear search will always execute half of the slowest queries across values of s. A

classic solution to this problem is to employ binary search, skipping over many values

of s which can be ruled out from being the cutoff. Unfortunately, our experiments show

that the runtime efficiency gain from binary search is not clearly logarithmic, due to

the fact that queries which are closer to the “actual” set size require the most solver

time, and binary search spends many queries close to the target size. Moreover, this

search must be carefully tuned to deal with the possibility of false negatives that can

occur as a result of the probabilistic model counting procedure.

Describing F. In order for SMT solvers such as Z3 to reason about format checking

functions using a theory of quantifier-free bitvectors, the function must be encoded as

operations which are supported by this solver theory. We considered implementations

comprising of bitwise operations, boolean operations, and ternary conditionals. We use

Z3’s interface, which allows our to process tool function descriptions encoded as Python

and SMT-LIB. We also developed experimental tooling to support standard boolean

circuit formats.

Describing malleation. To avoid requiring users to re-invent basic functionality,

Delphinium provides built-in support for several malleation functions. These include

simple stream ciphers, stream ciphers that support truncation (from either the left or

the right side), and CBC mode encryption. The design of these malleation functions

required substantial extensions to the Delphinium framework.

2.8.2.1 Implementing Malleation Functions

Truncation. Support for truncation requires Delphinium to support plaintexts of

variable length. This functionality is not natively provided by the bitvector interfaces
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used in most solvers. We therefore modify the solver values to encode message length

in addition to content. This necessitates changes to the interface for F. We accomplish

this by treating the first log2(n) bits of each bitvector as a length field specifying how

long the message is and by having every implementation of F decode this value prior to

evaluating the plaintext. To properly capture truncation off either end of a message,

the malleation bitvector is extended by 2l̇og2(n) so the lowest order log2(n) bits of the

malleation bitvector specify how many bits should be truncated off the low order bits

of the plaintext and the next log2(n) bits specify what should be truncated from high

order bits of the message. For ease of implementation, in some schemes the n bits

following the truncation describe the length field of the plaintext. This allows for easily

expressing the exclusive-OR portion of our malleation without bit-shifting and allows

encoding extension. Some schemes, such as stream ciphers, only enable truncation off

one side of the message, and so in this case we add a constraint to the formula which

disallows truncation off the low order bits of a message. This is because trunction off

the high order bits would imply a misalignment of the ciphertext with the keystream,

causing decryption to produce effectively randomized plaintext.

Truncation for Block Cipher Modes. In block cipher modes such as CTR, CFB, and

OFB, an attacker also has the ability to increment the nonce and truncate off blocks of

ciphertext. This is not necessarily possible when dealing with other stream ciphers,

due to the keystream being misaligned with the ciphertext. To capture this capability,

in the malleation function we additionally constrain the malleation string to express

truncation off the high order bits of a message (earlier blocks of ciphertext), provided

the number of bits being truncated is a multiple of the block size.

CBC Mode. In contrast with stream ciphers, MaulΠCBC
plain is not equal to MaulΠCBC

ciph and
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moreover MaulΠCBC
plain is significantly more complex. In CBC mode, decryption of a ci-

phertext block Ci is defined as Pi = Deck(Ci)⊕Ci−1 where Ci−1 denotes the previous

ciphertext block. Since the block Ci is given directly to a block cipher, any imple-

mentation must account for the the fact that modification of the block Ci creates an

unpredictable effect on the output Pi, effectively randomizing it via the block cipher.

For a solver to reason over such an effect on the plaintext output, we would need to

include constraint clauses corresponding to encryption and decryption, i.e. boolean

operations implementing symmetric schemes like AES. To avoid this significant over-

head, we instead modify the interface of MaulΠCBC
plain to output two abstract bitvectors

(M,Mask). Mask represents a mask string: any bit j where Mask[ j] = 1 is viewed as a

wildcard in the message vector M. When Mask[ j]= 0, the value of the output message

is equal to M[ j] at that position, and when Mask[i]= 1 the value at position M[ j] must

be viewed as unconstrained. This requires that we modify F to take (M,Mask) as input.

The modified F is able to produce a third value in addition to true and false. This new

output value indicates that the format check cannot assign a definite true/false value

on this input, due to the uncertainty created by the unconstrained bits. In practice,

we implement the output of F as a bitvector of length 2, and modify our algorithms to

use 00 and 01 in place of 0 and 1, respectively. Realizing this formulation requires only

minor implementation changes to our core algorithms.

Exclusive-OR and Truncation for CBC. With CBC mode decryption, manipulating

a preceding ciphertext block Ci−1 produces a predictable exclusive-OR in the plaintext

block Pi. A message that has been encrypted with a block cipher can also be truncated,

provided that truncation is done in multiples of the block size. Therefore, we define

malleability for CBC to capture (1) block-wise truncation (from either the left or right

side of the ciphertext) and (2) exclusive-OR, where exclusive-OR at index i in one block
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produces the corresponding bit-flip at index i in the next block of decrypted ciphertext.

Supporting Extension. For encryption schemes that allow truncation off the be-

ginning of a message, an attacker may also be able to fill in the truncated portion

with arbitrary ciphertext, even if this ciphertext may decrypt to plaintext unknown

to them. If the corresponding portion of the plaintext is not examined by the format

check function, the attacker can derive information from such queries (if the portion is

checked, the attacker can only learn the result of the check over random bits by nature

of ciphers). Thus, we create an additional initial constraint for this special case, which

allows extension to the ciphertext, limited to where the corresponding plaintext is not

examined by the format function.

2.8.3 Further Implementation Considerations

Here we describe a number of challenges we encounter pursuing practicality in terms of

computational efficiency. We primarily consider efficiency to be measured as wall-clock

time to a solution as we expect this to be the primary relevant practical (rather than

theoretical) concern to a non-expert user of our system. We provide our approaches to

solving or mitigating the impact of these challenges.

2.8.3.1 Selecting SAT and SMT solvers

Our initial work explored using Z3 [MB08] due to its robust feature set and continued

support. We also attempted to use other SMT solvers including Boolector [Nie+18],

which is optimized for bitvector operations, and STP [Gan18], which supports Crypto-

MiniSAT (CMS) as a backend SAT solver. CMS [SNC09] is specifically optimized for

bitvector operations involving exclusive-ORs, which in standard CNF are represented

by expressions of exponential size in the number of variables. CMS is able to recover

and simplify exclusive-ORs in order to make their processing far more efficient in terms
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of concrete runtime, and additionally allows an extension of the CNF format which

includes exclusive-ORs represented in expressions only linearly sized in the number of

variables.

Unfortunately we found Boolector (via the Python bindings) unusable due to software

issues, and STP unusable due to significant overhead in constraint processing. As such,

we employ a hybrid architecture which exploits the benefits of both Z3 and CMS while

avoiding most of the aforementioned issues. In the course of developing Delphinium we

discovered and either fixed or worked with maintainers to fix various software issues in

these libraries. Fixing these issues was a necessary step, albeit one which hindered our

software development significantly and impacted our ability to run end-to-end tests.

Combining Z3 and CMS via a CNF bridge. To improve performance, we adopted

CMS, which has been used extensively in the model counting literature [SNC09] due

to its ability to simplify exclusive-OR clauses. CMS is natively supported by the STP

SMT solver, which provides powerful constraint simplification routines. Unfortunately,

our experiments with STP exposed a number of other performance limitations, as well

as intermittent bugs in formulae with large (> 64 bit) bitvectors. As an optimization,

we adopted a hybrid model that uses Z3 to periodically simplify the constraint system

and generate partial CNF files for CMS to reason over; we subsequently edit these files

directly to add exclusive-OR gates for model counting, and to include new constraints

derived from decryption oracle queries. We note that this approach is suboptimal from

a performance perspective, and that there is still room for performance improvement.

Nonetheless, we found that it systematically outperformed the tested alternatives.

CNF manipulation. In order to aid development of Delphinium, we developed tools

for manipulating both textual CNF files and bespoke Python CNF objects. We include

these tools in our contribution for general use, as the DIMACS CNF format is widely
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used in SAT/SMT work. These tools include efficiently adding exclusive-OR gates to

the “CNFXOR” files which CMS supports, and adding translation layers which allow

for efficient recovery of DIMACS SAT models for programs interfacing with Z3.

2.8.3.2 Employing parallelization

Modern SMT and underlying SAT solving strategies are amenable to parallelization.

Additionally, as a result of our optimizing search for a maximum satisfiable problem,

our algorithm is also highly parallelizable – a set of satisfiability checks can be run

with MBound constraints which require subsets of various sizes can be run in parallel,

and the result from the largest satisfiable size taken. We refer to the width of the range

of sizes run in parallel as the window size for parallelization. In order to effectively

allocate cores, we must balance increased window sizes with additional cores per solver

instance. Anecdotally, it is faster to run larger windows with fewer cores per solver

– an unsurprising indication that modern solvers do not use multiple cores at 100%

utilization.

Efficiently replicating a solver instance is a challenge across SMT implementations

(Z3 and STP) which led to multiple redesigns of our implementation. This is mostly

caused by features of the underlying C++ implementations which employ static vari-

ables, to which pointers are abstractly operated over in the Python bindings we use.

In order to circumvent these challenges while avoiding the overhead of e.g. the fork

system call we use a hybrid implementation which involves a Z3 solver instance in

a single process which exports its representation of the constraints as CNF, which

we can easily replicate and pass to many parallel instances of CMS after adding the

appropriate exclusive-OR constraints. By exporting CNF before adding XORs we avoid

slow CNF generation due to exponentially-sized XOR representations.
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2.8.3.3 Tseitin conversion and CNFXOR

In order to enable parallelization and to avoid the runtime overhead introduced by STP,

we export constraint systems to conjunctive-normal form (CNF) before solving via CMS.

This allows a set of constraints to be rapidly replicated for use by many independent

processes. However, XOR constraints such as those required by our hash functions

expand to CNF which is exponentially-sized in the number of variables in the XOR,

and as such we experienced massive runtime overhead in Z3 when exporting our model

counting constraint systems. In order to work around this, we export CNF excluding

the XORs required by the model counting algorithm, and then append these XORs

to the CNF output. CMS is able to process such XOR-supplemented CNF (CNFXOR)

files efficiently, and they represent XORs in linearly- rather than exponentially-sized

output.

2.8.4 Software

Our prototype implementation of Delphinium comprises roughly 4.2 kLOC of Python.

This includes the attack orchestrator, example format check implementations, the test

harness, and our generic solver Python API which allows for modular swapping of

backing SMT solvers, with implementations for Z3 and STP provided. In pursuing this

prototype, we submitted various patches to the underlying theory solvers that have

since been included in the upstream software projects.

Also included are functions which allow instantiations of Gomes et al.’s [GSS06]

model counting tests with configurable parameters, CNF generation using the Z3 Tactic

API and strategies for recovering solutions from CMS, CNFXOR generation for use in

CMS, and translation from CMBC-GC boolean circuit output (compilations of ANSI C

programs to boolean circuits) to Python for use with the Python solver API.
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2.8.5 Extensions

In general, arbitrary functions on fixed-size values can be converted into boolean

circuits which SMT solvers can reason over. Existing work in MPC develops compilers

from DSLs or a subset of C to boolean circuits which could be used to input arbitrary

check format functions easily [Moo+16; Fra+14]. Experimenting with these, we find

that the circuit representations are very large and thus have high runtime overhead

when used as constraints. It is possible that circuit synthesis algorithms designed

to decrease circuit size (used for applications such as FPGA synthesis) or other logic

optimizers could reduce circuit complexity, but we leave exploring this to future work.

For complex format checking functions where only compiled implementations are

available, existing works in function approximation (used commonly in fuzzing) can be

leveraged to extract approximations of format check functions, against which possible

candidate attacks could be evaluated. Heuristically derived C function approximations

are developed in the American Fuzzy Lop fuzzer and in NeuEx, a machine-learning

driven fuzzing system [Zal; She+18]. We additionally provide a translation tool from the

output format of CMBC-GC [Fra+14] to Python (entirely comprised of circuit operations)

to enable use of the Python front-end to Delphinium. We leave the empirical evaluation

of such heuristic approximation techniques to future work. Emerging techniques in

symbolic execution such as those explored in [Wan+19] may provide an additional

avenue for format function constraint generation in future work.

2.9 Format Check Implementations

We present a listing of several Python-Solver format check functions below to elucidate

our implementation and to illustrate the relative simplicity of employing our tool rather

than manually evaluating various format check functions for their inherent information
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leakage.

2.9.1 PKCS #7 padding

def checkFormatPKCS7(padded_msg, solver):
""" PKCS7 check format as solver constraints """
# size of a byte
unit_size = 8
# number of units which make up a block
block_size = 16
# base case of an OR iteratively constructed
is_valid = solver.false()
# for each possible padding size
for i in range(1, block_size+1):

# base case of an AND iteratively constructed
correct_pad = solver.true()
# for each byte of a pad of size i
for j in range(i):

# extract from padded_msg the bits
# which should make up a padding byte
pad_byte = solver.extract(

padded_msg,
(j + 1)*unit_size-1,
j*unit_size)

# pad is correct if this and all previous
# checked bytes match the bitvector
# representing the size
correct_pad = solver._and(

correct_pad,
solver._eq(

solver.bvconst(i, unit_size),
pad_byte))

# padding is valid if one size matched
# thus, return the OR of padding checks at each size
is_valid = solver._or(is_valid, correct_pad)

return is_valid

2.9.2 AWS Session Ticket

def checkFormatAWSSessionTicket(full_msg, time, state, mall=0, trunc=0):
# If value is changed for these fields, will fail
if grabByte(mall, 1) != 0:

return 2
if grabNBytes(mall, 2, 2) != 0:

return 2

# message must be at least S2N_STATE_SIZE_IN_BYTES bytes long
if full_msg & ((1 << length_field_size)-1) != test_length:

return 0
msg = full_msg >> length_field_size
# first byte must match S2N_SERIALIZED_FORMAT_VERSION
if grabByte(msg,0) != S2N_SERIALIZED_FORMAT_VERSION:

return 0

# protocol version from earlier point in time
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# this is stateful information
if grabByte(msg, 1) != state["proto_version"]:

return 0

# iana value of cipher suite negotiated, this is also stateful information
if grabNBytes(msg, 2, 2) != state["iana"]:

return 0

# checking expiry of the session ticket, this is also stateful
time_on_ticket = grabNBytes(msg, 8, 4)
# this is going to change every time it's called...
if time_on_ticket > time:

return 0
if (time - time_on_ticket) > TICKET_LIFETIME:

return 0

return 1

2.9.3 Bitwise padding

def checkFormatBitwisePadding(padded_msg, solver):
numBits = solver.extract(padded_msg, paddingSizeBits-1, 0)
compound_expr = solver.true()
numVal = 1
for i in range(1, ciphertextBits-paddingSizeBits+1):

ones = solver.extract(padded_msg, paddingSizeBits+i-1, paddingSizeBits)
compound_expr = solver._if(solver._eq(numBits, i),

solver._eq(ones, solver.bvconst(numVal,i)),
compound_expr)

numVal = (numVal << 1) | 1
length_check = solver._ule(numBits,ciphertextBits-paddingSizeBits)
return solver._and(length_check, compound_expr)

2.10 Experiments

In this section we evaluate Delphinium against a variety of encryption and format

checking functionalities. We include examples ranging from demonstrative to practical,

re-discovering known attacks and generating novel ones. We further include a negative

result as well as examples which stretch the system to its limits in order to extrapolate

feasibility against further, unknown, or more complex targets.
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2.10.1 Experimental Setup

To evaluate the performance of Delphinium, we tested our implementation on several

multi-core servers using the most up-to-date builds of Z3 (4.8.4) and CryptoMiniSAT

(5.6.8). The bulk of our testing was conducted using Amazon EC2, using compute-

optimized c5d.18xlarge instances with 72 virtual cores, 144GB of RAM, and 900GB of

extraneous ephemeral EC2 storage. Several additional tests were run a 72-core Intel

Xeon E5 CPU with 500GB of memory running on Ubuntu 16.04, and a 96-core Intel

Xeon E7 CPU with 1TB of memory running Ubuntu 18.04. We refer to these machines

as AWS, E5 and E7 in the sections below.

Data collection. For each experimental run, we collected statistics including the

total number of decryption oracle queries performed; the wall-clock time required to

construct each query; the number of plaintext bits recovered following each query;

and the value of s used to construct a given malleation string. We also recorded each

malleation string S produced by our attack, which allows us to “replay” any transcript

after the fact. The total number of queries required to complete an attack provides the

clearest signal of attack progress, and we use that as the primary metric for evaluation.

However, in some cases we evaluate partial attacks using the ApproxMC approximate

model counting tool [SM19]. This tool provides us with an estimate for the total

number of remaining candidates for M∗ at every phase of a given attack, and thus

allows evaluation of partial attack transcripts.

Selecting attack parameters. The adjustable parameters in FastSample include

t, the number of counting trials, δ, which determines the fraction of trials that must

succeed, and the length of the parity constraints used to sample. We ran a number

of experiments to determine optimal values for these parameters across the format

functions PKCS7 and a bitwise format function defined in §2.10.2. Empirically, δ= 0.5,
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2⩽ t ⩽ 5, and parity functions of logarthmic length are suitable for our purposes. These

tests were performed on AWS.

2.10.2 Experiments with Stream Ciphers

Because the malleation function for stream ciphers is relatively simple (consisting

simply of bitwise exclusive-OR), we initiated our experiments with these ciphers.

Byte-wise Encryption Padding. The PKCS #7 encryption standard (codified in RFC

2315) [Kal98] defines a padding scheme for use with block cipher modes of operation.

This padding is similar to the standard TLS CBC-mode padding [AP13] considered by

Vaudenay [Vau02]. We evaluate our algorithm on both these functions as a benchmark

because PKCS7 and its variants are reasonably complex, and because the human-

developed attack is well understood. We refer to these schemes as PKCS7 and TLS-

PKCS7, respectively.

The PKCS7 function operates by padding an octet-aligned message to a multiple

of B bytes, where B is typically a cipher’s block size. The padding string is of length

1≤ P ≤ B bytes, and each byte comprises an 8-bit unsigned encoding of P. The format

checking function FPKCS7 recovers P from the final byte of the padded message, verifies

that P ∈ {1, . . . ,B}, and checks that each of the trailing P bytes contains the same value.

We present a Z3-Python implementation in §2.9. TLS-PKCS7 is nearly identical, with

only small differences: first, the byte used to pad is not the value P, but rather P −1,

and second, padding may extend beyond the last block of the message. Neither of these

differences complicates the constraint formula significantly.

Setup. We conducted an experimental evaluation of the PKCS #7 attack against a 128-

bit stream cipher, using parameters t = 5,δ= 0.5. Our experiments begin by sampling

a random message M∗ from the space of all possible PKCS #7 padded messages, and
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setting G0 ← FPKCS7. This plaintext distribution tends to produce messages with short

padding. This evaluation was performed on AWS, E5, and E7. We also implemented

the manually-developed “human” attack (based on Vaudenay’s approach [Vau02]) as a

baseline for comparison.

Results. Our four complete attacks completed in an average of 1699.25 queries (min.

1475, max. 1994) requiring 1.875 hours each (min. 1.63, max. 2.18). A visualization of

one such attack is shown in §2.11.1. These results compare favorably to the Vaudenay

attack, which requires ~2000 queries in expectation. However it is likely that additional

tests would find some examples in excess of this average. As points of comparison,

attacks with t = 3 resulted in a similar number of queries (modulo expected variability

over different randomly sampled messages) but took roughly 2 to 3 times as long to

complete, and attacks with t = 1 reached over 5000 queries having only discovered half

of the target plaintext message.

Bitwise Padding. To test our attacks, we constructed a simplified bit padding scheme

Fbitpad. This contrived scheme encodes the bit length of the padding P into the rightmost

⌈log2(n)⌉ bits of the plaintext string, and then places up to P padding bits directly to

the left of this length field, with each padding bit set to 1. We verified the effectiveness

of our attacks against this format using a simple stream cipher. Using the parameters

t = 5, δ= 0.5 the generated attacks took on average 153 queries (min. 137, max. 178).

Figure 2.1 shows one attack transcript at t = 5,δ= 0.5. These experiments were run

primarily on E5.

Negative result: Cyclic Redundancy Checks (CRCs). Cyclic redundancy checks

(CRCs) are used in many network protocols for error detection and correction. CRCs

are well known to be malleable, due to the linearity of the functions: namely, for a CRC

it is always the case that CRC(a⊕b)=CRC(a)⊕CRC(b).
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While the basic algorithm is intuitive, there are numerous variations of CRCs in

existence. Each CRC-n is defined by the degree n of the generator polynomial, the

generator’s coefficients, the order that the input data will be processed in and the

output order (which is sometimes called input/output reflection), the input mask, and

the output mask. The calculation for equality also differs in some implementations:

a CRC computation is done over the data stream concatenated with a number of 0’s

equivalent to the CRC field size and the resulting equality check is done by computing

a CRC on the original data stream concatenated with the CRC and checking if the

remainder is 0.

To test Delphinium’s ability to rule out attacks against format functions, we im-

plemented a message format consisting of up to three bytes of message, followed by

a CRC-8 and a 5-bit message length field. The format function Fcrc8 computes the

CRC over the message bytes, and verifies that the CRC in the message matches the

computed CRC. We used a simplified implementation that does not reflect input an

output, or add an initial constant value before or after the remainder is calculated.

These simplifications do not meaningfully affect the outcome of our experiments for

the purposes of confirming a negative result.

A key feature of this format is that a valid ciphertext C∗ should not be vulnerable

to a format oracle attack using a simple exclusive-OR malleation against this format,

for the simple reason that the attacker can predict the output of the decryption oracle

for every possible malleation of the ciphertext (due to the linearity of CRC), and thus

no information will be learned from executing a query. This intuition was confirmed

by our attack algorithm, which immediately reported that no malleation strings could

be found. These experiments were performed on E5.
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2.10.3 Ciphers with Truncation

A more powerful malleation capability grants the attacker to arbitrarily truncate

plaintexts. In some ciphers, this truncation can be conducted from the low-order bits

of the plaintext, simply by removing them from the right side of the ciphertext. In

other ciphers, such as CTR-mode or CBC-mode, a more limited left-side truncation can

be implemented by modifying the IV of a ciphertext. Delphinium includes malleation

functions that incorporate all three functionalities.

CRC-8 with a truncatable stream cipher. To evaluate how truncation affects the

ability of Delphinium to find attacks, we conducted a second attack using the function

Fcrc8, this time using an implementation of AES-CTR supporting truncation. Such a

scheme may seem contrived, since it involves an encrypted CRC value. However, this

very flaw was utilized by Beck and Tews to break WPA [TB09]. In our experiment, the

attack algorithm was able to recover two bytes of the three-byte message, by using the

practical strategy of truncating the message and iterating through all possible values

of the remaining byte. These experiments were run primarily on E5.

Using truncation, differentiation can be accomplished for all but the last byte:

consider a message encrypting a properly formatted CRC-8 message of two bytes

denoted as d15d14d13 . . .d0∥c (with ∥ as concatenation) where c denotes the CRC value

and d15 . . .d0 the bits of the message. If we truncate the message to be d7 . . .d0∥c, c is

no longer valid. But precisely how has it been invalidated? Considering our message

as a polynomial and the CRC generator polynomial as b(x), by the division algorithm

there must exist q(x), r(x) such that

r(x)=
15∑︂
i=0

di · xi + q(x)b(x)
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The correct CRC for our truncated message ∑︁7
i=0 di · xi can then be calculated as

(r(x)+
15∑︂
i=8

di · xi) (mod b(x))=
7∑︂

i=0
di · xi + q(x)b(x)

Therefore, if we want to test whether a ciphertext message begins with d′
15 . . .d′

8 we

can truncate off the end of the ciphertext and send the modified CRC: r(x)⊕ (
∑︁15

i=8 d′
i∗xi)

(mod b(x)). If our guess for the plaintext was correct, the new CRC is correct for

the truncated message, since CRC(d15 . . .d0)⊕CRC(d′
15...d′

8∥0 . . .0})=CRC(0 . . .0∥d7 . . .d0).

A human attack could then learn bytes starting at the the end of the message by

truncating and modifying the CRC in each query.

As this example demonstrates, the level of customization and variation in how

software developers operate over encrypted data streams can obfuscate the concrete

security of an existing implementation. This illustrates the utility of Delphinium since

such variation’s effect on the underlying scheme does not need to be fully understood

by a user, outside of encoding the format’s basic operation.

Thumb Embedded ISA. To exercise Delphinium against a novel format oracle of

notably different structure than those traditionally analyzed (such as padding), we

implemented a minimal instruction interpreter for the 16-bit Thumb instruction set

architecture (ISA), defined as part of the ARM specification [Lim18], capable of emit-

ting illegal instruction signals. Then, operating over stream-cipher encrypted Thumb

instructions and using illegal instructions as a boolean signal, Delphinium is able to

exploit the exclusive-OR malleation to uncover the top seven bits of each 16-bit instruc-

tion, in many cases uncovering nine or more (up to 16) bits of each instruction, in an

average of ~13.3 queries, with each full attack taking only seconds on E5. Such a partial

firmware decryption generally leaks the instruction opcode, but not its arguments.

This could be very useful to an attacker, for example in fuzzy comparison with compiled
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open source libraries to determine libraries and their versions used in a given firmware

update.

Although limited in a few regards, most notably in the simplification of the format

oracle into a boolean signal and the assumption that an attacker could be situated in a

way that this signal could be gathered, this attack is timely in that it is inspired by

the widespread use of unauthenticated encryption in device firmware updates[Ecl20].

If these updates are delivered over-the-air, they may be susceptible to man-in-the-

middle attacks enabling such a decryption oracle. Extensive industry research and a

current Internet Draft note that unauthenticated firmware updates are an ongoing

problem[Ecl20; MTB20].

This initial result serves both as validation of Delphinium and as creation of an

avenue for future work, including the development of a model for a more complex but

widespread ISA such as 32-bit ARM[Lim18], perhaps exploiting additional signals

such as segmentation faults or side channels in order to capture the capabilities of a

sophisticated adversary.

S2N with Exclusive-OR and Truncation. S2N is an open source TLS library

that was created by Amazon Web Services [Sch15]. One of the features includes an

implementation of the recently standardized TLS 1.3. Part of the protocol for TLS 1.3

includes a specification for session resumption, which is used when a client and server

have an already established connection but would like to start up a new session without

re-authenticating one another. The client receives a session ticket from the server

that it can use to resume state at a later date. The S2N library delivers a concrete

implementation of this protocol in the form of a 60 bytes session state value with the
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following format (each field concatenated):

[RANDOMSECRET][TIMEFIELD][CIPHERSUITE]

[PROTOCOLV ERSION][FORMATV ERSION]

The 48-byte RANDOMSECRET denotes a pre-master secret that is used as keying

material, and the 8-byte TIMEFIELD denotes when the ticket was issued. After

authentication and decryption of the AES-GCM encrypted ticket, various checks are

performed on values embedded in the ticket. Depending upon these values, a server

either continues communicating with an endpoint or may error. In other words, we

may interpret the check of the ticket as a format and feed in a description of it to

Delphinium. While some may question the efficacy of such an attack, given that the

session ticket is encrypted with an AEAD cipher, it is possible for such an attack to

proceed provided that the authentication component of the cipher is broken. Indeed,

it has been shown in the past that reusing a nonce in AES-GCM with small tags

results in a higher than expected chance of forgery and a series of successful forgery

attempts even leads to recovery of the authentication key [Fer05]. Nonce reuse is also

not that rare of an occurrence and has been seen in the wild in at least one internet

wide scan [Böc+16]. To evaluate a realistic attack on a practical format function,

we developed a format checking function for the Amazon s2n [Sch15] TLS session

ticket format. s2n uses 60-byte tickets with a 12-byte header comprising a protocol

version, ciphersuite version, and format version, along with an 8-byte timestamp that is

compared against the current server clock. Although s2n uses authenticated encryption

(AES-GCM), we consider a hypothetical scenario where nonce re-use has allowed for

message forgery [Fer05; Böc+16].

Our experiments recovered the 8-byte time field that a session ticket was issued
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at: in one attack run, with fewer than 50 queries. However, the attack was unable to

obtain the remaining fields from the ticket. This is in part due to some portions of the

message being untouched by the format function, and due to the complexity of obtaining

a positive result from the oracle when many bytes are unknown. We determined that

a full attack against the remaining bytes of the ticket key is possible, but would

leave 16 bytes unknown and would require approximately 250 queries. Unsurprisingly,

Delphinium timed out on this attack. These experiments were run on AWS and E5.

2.10.4 CBC mode

We also used the malleation function for CBC-mode encryption. This malleation

function supports an arbitrary number of blocks, and admits truncation of plaintexts

from either side of the plaintext. In practice, truncation in CBC simply removes full

blocks from either end of the ciphertext. The CBC malleation function accepts a

structured malleation string S, which can be parsed as (S′, l, r) where l, r are integers

indicating the number of blocks to truncate from the message.

To test this capability, we used the PKCS7 format function with a block size of B = 16

bytes, and a two-block CBC plaintext. (This corresponds to a ciphertext consisting

of three blocks, including the Initialization Vector.) Delphinium generated an attack

which took 3441 oracle queries for a random message with four bytes of padding. This

compares favorably to the Vaudenay attack, which requires 3588 queries in expecta-

tion. Interestingly, Delphinium settled on a more or less random strategy of truncation.

Where a human attacker would focus on recovering the entire contents of one block be-

fore truncating and attacking the next block of plaintext, Delphinium instead truncates

more or less as it pleases: in some queries it truncates the message and modifies the

Initialization vector to attack the first block. In other queries it focuses on the second

block. Figure 2.4 gives a brief snapshot of this pattern of malleations discovered by
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Initialization Vector Ciphertext Block 1 Ciphertext Block 2
Trunc
Len

Figure 2.4: A contiguous set of malleation queries made by Delphinium during a simulated
CBC attack. The rightmost bits signal truncation (from left or right).

Delphinium. Despite this query efficiency (which we seek to optimize, over wall-clock

efficiency), the compute time for this attack was almost a week of computation on E5.

Additionally, we created a networked instantiation of the attack against TLS-PKCS7.

In this implementation, malformed ciphertexts are transmitted over a local network

to the decrypting endpoint, which then replies with the leaked boolean signal used to

update the solver. We include this for completeness, despite its equivalence to the shim

approach with respect to evaluating Delphinium.

Sudoku. SAT solvers have been used many times to solve Sudoku puzzles, e.g., [Rie+17;

Ran18; ppm18]. To evaluate our techniques against arbitrary formats, we instantiated

a function Fsudoku that interprets a plaintext M as an encoded D×D board, and outputs

1 if and only if the puzzle is valid.

Because existing implementations e.g., [ppm18] make use of algebraic theories

(which are not easily translated to our setting), we wrote a new constraint formula

using quantifier-free bitvectors. Each square of the puzzle is encoded using ⌈log2(D+1)⌉
bits, with 0 corresponding to an unfilled square. Because our constraint systems become
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very large for standard 9×9 puzzles, we tested our system against 4×4 puzzles. In this

format, each square is represented by a 3-bit substring, encoding the values {0, . . . ,7}.

This is a very simple format, since there are only 280 possible valid puzzles.

We tested this format using a simple stream cipher, beginning with 10 random (valid)

Sudoku puzzles, and with G0 = FSudoku, t = 5 and δ = 0.5. We found that our attack

was able to derive the correct plaintext Sudoku solution in an average of 20 queries,

with the attacks running in an average of 33 minutes. The variation in the attack

statistics is large (min. 7, max. 32 queries; min. 10, max. 60 minutes). This occurs

because the algorithm is able to derive many more constraints on its model when the

oracle returns a True result, and this occurs only in the relatively rare case where the

chosen malleation induces a permutation on some subset of the entries, preserving

the uniqueness of values in rows, columns, and squares, and without changing values

to anything outside of {1, . . . ,4}. Each attack completed after it found the second such

malleation; the variation comes from invalid guesses. A visualization of one attack can

be found in §2.11.5.

2.11 Additional Experimental Results

We provide this section to demonstrate further experimental evaluation performed to

validate Delphinium against both practical and novel targets.

2.11.1 PKCS #7

Figure 2.5 demonstrates an example sequence of malleations strings displayed as

bitmaps, with one malleation string per row. This image represents a full attack,

constituted of 1475 queries, against PKCS #7 with a 128-bit plaintext encrypted with

a stream cipher. As the attack progresses, bytes are discovered from right to left in a
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similar fashion to the human attack. This emergent behavior occurs as it is the most

efficient way to discover the underlying plaintext bytes, in expectation.

2.11.2 Bitwise Padding Format Tests Over t

We empirically observe the parameter δ has limited impact on solver runtime and set

δ= 0.5., i.e. requiring all trials to be satisfied. This produces reasonable performance

and is consistent with previous works [GSS06]. After running a variety of test we

determined that t is a key parameter affecting attack runtime. Analysis confirmed

that larger t increases query profitability by increasing the certainty of the underlying

counting formula [GSS06]. However, larger t significantly increases the complexity of

each constraint formula, which results in an (approximately linear) increase in CNF

complexity and a variable increase in solver runtime depending on the underlying

constraints. Additionally, despite increased runtime, we find that increasing t is

subject to rapidly diminishing returns. As such, we generally use the lowest value for t

which empirically succeeds. Figure 2.6 demonstrates malleation string bitmaps for full

attacks against the bitwise padding format for t ∈ 2, . . . ,5. The t = 1 bitmap is truncated

significantly.

Additionally with the bitwise format, for each t from {1, . . . ,6} we execute a full attack,

once each for logarithmically-sized and full hash functions. We use ApproxMC to evaluate

generated queries by model counting the messages which are excluded by a given query.

This value is tightly related to the remaining valid candidate messages and as such

the experiments are comparable.

To evaluate the impact of changing t on our attacks against the bytewise PKCS #7

padding format, we conducted a series of “microbenchmarks” of our attack’s experi-

ment generation procedure. In each experiment, we asked the algorithm to derive 10

malleation strings S at arbitrary points along a complete attack run, and then used
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Figure 2.5: PKCS #7 malleation bitmap with characteristic “staircase” pattern as the attack
progresses through the ciphertext right to left. The attack proceeds top to bottom, with one
row per iteration of the attack.

83



CHAPTER 2. DELPHINIUM

t=1 t=2 t=3 t=4 t=5

(Approximately 90% of attack truncated)

186 total queries

169 total queries
163 total queries

153 total queries

2238 total queries

Figure 2.6: Malleation strings for 128-bit bitwise padding (Fbitpad) using a stream cipher.
Experiments consider several different values of t, all with δ = 0.5. Each uses a different
random 128-bit message, which can account for some variability in the attack progress. For
t = 1 the total number of queries is too large to show, and so we only present approximately the
first 10% of the full attack transcript.

the ApproxMC model counting tool to measure and average the minimum profitability of

the resulting malleation string.We did this by simulating each possible result from the

decryption oracle, and using ApproxMC the number of plaintext candidates eliminated

by each. We repeated each experiment for each t ∈ {1, . . . ,6}, and measured the wall-clock

execution time of experiment generation. This strategy is necessarily heuristic, but is

a useful method for indicating appropriate parameters for a full attack run without a

priori knowledge of attack performance.

2.11.3 Differences between Short and Long Exclusive-OR

The following figures demonstrate attacks on the 128-bit Bitwise Padding Format,

highlighting differences when short (2.7) or long (2.8) exclusive-or expressions are used.
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Figure 2.7: Approximate number of removed candidate messages for each query in the attack,
with parity constraints of size logn (i.e. short).

Figure 2.8: Approximate number of removed candidate messages for each query in the attack,
with parity constraints of size n

2 (i.e. long).
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2.11.4 CRC

Figure 2.9 displays a bitmap of malleation strings for an attack against CRC, allowing

truncation and exclusive-OR malformations.

Figure 2.9: Representation of a malleation string an attack on a CRC-8 where the length of
the data to compute the CRC over is 3 bytes long.

2.11.5 Sudoku

In Figure 2.10 we show an attack against the Sudoku format check. This format maps

a 48-bit bitvector to entries into a 4x4 Sudoku board and checks the validity of the

resulting solution. Values are coded as 3 bits, allowing entries from 0 to 7 (where 0 is

coded as an unfilled square). Initially, the solver knows nothing about the real plaintext,

which is a given Sudoku solution. The mauled boards show the malleation chosen

by the solver applied to the real plaintext. After 7 queries, the solver has uniquely

constrained its model for the real plaintext, which is correct. When the solver chooses

86



CHAPTER 2. DELPHINIUM

Query #

Knowledge of boardMauled board

1

2

3

4

5

6

7

1 4 2 3

3 2 4 1

4 1 3 2

2 3 1 4

4 2

2 4

4 2

2 4

1 2 3 1 2 3

1 2 3

1 2 3

1 2 31 2 3

1 2 3

1 2 3

4 2

2 4

4 2

2 4

1 2 3 1 2 3

1 2 3

1 2 3

1 2 31 2 3

1 2 3

1 2 3

False

True

True

False

False

False

False

Query result

1 5 3 3

3 3 5 1

4 1 3 2

2 3 1 4

6 4 5 3

4 2 3 1

7 6 5

1 4 2 3

3 6 4 5

3 2 4 1

4 1 3 2

1 7 2

6 3 1

3 2 3 6

3 6 1

2 3 6 3

3 2 4 1

1 4 2 3

4 3 1 2

2 1 3 4

4 7 4 3

2 5 7 4

7 6 1 4

5 6 7

1 4 2 3

2 3 4 1

4 1 3 2

3 2 1 4

Figure 2.10: An example of an attack against the Sudoku format check. When the solver has
narrowed a square to some candidate entries, multiple numbers are shown in a given square.
Squares which are changed from their original values by a malleation are colored in light red.
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a malleation which causes the resulting Sudoku board to remain valid, it can derive

many additional constraints on the values of its model for the real plaintext. Other

attacks took up to 33 queries, but have a similar pattern (deriving notable information

from True oracle results).

2.12 Discussion

We conclude this chapter with a discussion of extant related works as well as open

problems uncovered as a result of this exploration.

2.12.1 Related Work

CCA-2 and format oracle attacks. The literature contains an abundance of works

on chosen ciphertext and format oracle attacks. Many works consider the problem of

constructing and analyzing authenticated encryption modes [BN00; Rog02; RS06], or

analyzing deployed protocols, e.g., [BKN04]. Among many practical format oracle at-

tacks [Mau+15; Bar+12; Pod+18; RD10; YPM05; PY04; JS11; AF18; Kup+15; Gar+16a],

the Lucky13 attacks [AP13; AP15] are notable since they use a noisy timing-based side

channel.

Automated discovery of cryptographic attacks. Automated attack discovery on

systems has been considered in the past. One line of work [CSP16], [Pha+17] focuses

on generating public input values that lead to maximum leakage of secret input in

Java programs where leakage is defined in terms of channel capacity and Shannon

entropy. Unlike our work, Pasareanu et al. [CSP16] do not consider an adversary

that makes adaptive queries based on results of previous oracle replies. Both [CSP16]

and [Pha+17] assume leakage results from timing and memory usage side channels.
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Using solvers for cryptographic tasks/model counting. A wide variety of cryp-

tographic use cases for theory solvers have been considered in the literature. Soos et

al. [SNC09] developed CryptoMiniSAT to recover state from weak stream ciphers, an

application also considered in [COQ09]. Solvers have also been used against hash func-

tions [MZ06], and to obtain cipher key schedules following cold boot attacks [AKMY10].

There have been many model counting techniques proposed in the past based on uni-

versal hash functions [GSS06; Zha+16]. However, many other techniques have been

proposed in the literature. Several works propose sophisticated multi-query approach

with high accuracy [SM19; CMV16a], resulting in the ApproxMC tool we use in our

experiments. Other works examine the complexity of parity constraints [Zha+16], and

optimize the number of variables that must be constrained over to find a satisfying

assignment [Ivr+15].

2.12.2 Open Problems

In this work we developed novel techniques for automating the discovery of chosen

ciphertext attacks on symmetric encryption scheme. We presented experimental results

from our software, demonstrating that it generates successful attacks against both

real-world and contrived format oracles. We view these initial results primarily as a

demonstration of feasibility: our work leaves significant room for further optimization,

some of which we apply and validate in Chapter 3.

Our work elucidates a number of open problems. In particular, we proposed several

possible further optimizations to our tools which warrant exploration. Additionally,

while we demonstrated the viability of our model count optimization techniques through

empirical analysis, these techniques require theoretical attention. Our ideas may also

be extensible in many ways: for example, developing automated attacks on protocols
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with side-channel leakage; on public-key encryption; and on “leaky” searchable en-

cryption schemes, e.g., [Gru+18]. Most critically, a key contribution of this work is

that it poses new challenges for the solver research community, which may result in

improvements both to general solver efficiency, as well as to the performance of these

attack tools.
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McFIL

This chapter is based on work originally published in Usenix Security 2023 [ZCG23].

For hundreds of years, the history of what could be called cryptography was cen-

trally focused on protecting the confidentiality of a message in transit or stored in

some way, whether written on paper, spoken, or typed into an Enigma machine, for

example [Sma16]. However, since the 1980s, there has been a monumental expansion

of how confidentiality could be achieved and the capabilities of the systems designed

to protect it. Three particular efforts, originating in the research literature, are the

principal drivers of this expansion. The first is secure multi-party computation (MPC),

generally credited to Yao in the early to mid 1980s [Yao82; Yao86a]; Zero-Knowledge

Proofs (ZKP), originated by Goldwasser, Micali, and Rackoff in 1985 [GMR85]; and

Fully-Homomorphic Encryption (FHE), initiated by Gentry et al. in 2009 [Gen09].

Each of these ideas have become full-fledged areas of research with multitudes of

advancements since their beginnings, and they share one particular thing in common:

they all provide confidentiality of data used in their protocols plus some additional

desirable traits such as collaborative private program execution (MPC), homomorphism

over addition and multiplication allowing arbitrarily complex arithmetic programs to

be evaluated on ciphertexts (FHE), or the capability to guarantee, or at least imply with
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overwhelming probability, certain predicates of the plaintext given only the ciphertext

(ZKP).

Given that the capabilities and usage of cryptographic confidentiality are so rapidly

evolving, in order for the goals of usable cryptography for data confidentiality to be

achieved, we must pursue these emerging areas in addition to more classical ones such

as the chosen-ciphertext attacks of the prior chapter. This chapter covers these three

distinct classes of private computation (MPC, FHE, and ZKP) and our approach to

providing automated analysis based on our definition of privacy loss, which is built

around the information leakage inherent to the functionality in question.

Functionality-inherent leakage (FIL) is a universal characteristic of systems which

compute over private data. Modern cryptography, that is, secure multiparty computa-

tion, fully-homomorphic encryption (FHE), and zero-knowledge proofs [Ish+07], are

all in essence computations performed on encrypted data, whether directly (FHE),

collaboratively over a network (MPC), or in a prover-verifier model (ZKP, i.e. one party

“executing” by generating a proof of some predicate(s), and another verifying them).

The use of these cryptographic tools is growing steadily across the public and private

domains, increasing the stakes of these systems’ security and increasingly bifurcating

the set of people who develop these systems from the set who use and rely on them.

FIL occurs when an adversary is able to observe or participate in computation

over private data, and observe the outputs of this computation (or factors correlated

with them). Naturally, given a computable function and even partial knowledge of

some inputs and outputs, an adversary can infer something about the unknown inputs

which induced observed outputs. The amount of information the adversary learns is

determined by the structure and characteristics of the functionality in question.

In this chapter, we provide McFIL, an algorithmic approach for evaluating FIL
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within arbitrary functionalities, and an accompanying software implementation which

can be used to determine the extent of leakage a functionality admits. Our approach

does not exploit any cryptographic insecurity; rather, we leverage the unavoidable

leakage inherent to underlying functions. The fact that cryptographic protocols can

reveal information via correctly-evaluated outputs should be no surprise to cryptog-

raphers. However, these systems are now being more widely deployed by non-expert

implementers who have few tools to analyze the functionalities they seek to evaluate.

McFIL can derive inputs which optimize leakage, leveraging FIL to uncover confidential

data, or provide probabilistic evidence of the absence of such an attack. It is our aim to

provide a systematic way for prospective, non-expert users of cryptographic systems

to evaluate functionalities they wish to compute securely, so they can make informed

decisions on the risks of doing so even within cryptographically-secure schemes.

Our approach. We rely on a family of techniques called Model Counting, and we

refer to our tool as McFIL for “Model Counting Functionality-Inherent Leakage.” Most

critically, McFIL is designed to quantify and optimize leakage given only a description

of the circuit to be implemented, and does not require the implementer to assist the

tool in understanding the functionality. This allows the tool to automatically derive

a number of “attacks,” including those not easily predicted by practitioners. For

example, the classic Yao’s Millionaires problem [Yao82] admits one bit of leakage per

execution due to the functionality (greater-than comparison). Given only a description

of the functionality, McFIL automatically derives inputs to uncover the other player’s

salary in approximately log(n) sequential executions (Figure 3.1). Dual Execution

MPC [MF06; HKE12] admits adversary-chosen one-bit leakage in an equality check

protocol. McFIL derives a sequence of predicates of configurable complexity to uncover

the honest party’s input. We evaluate McFIL against an array of other functionalities

as proofs of concept in §3.4, either completely recovering the honest parties input(s)
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or providing an equivalence class of candidate solutions many orders of magnitude

smaller than the initial search space.

Leakage Explained. When considering novel functionalities for use in secure protocols

such as MPC, FHE, or ZK, one must consider how the privacy of secret inputs will be

maintained. Therefore, practitioners must consider the security of their schema but

also what can be inferred from the outputs of the functionalities. Even with provably

secure protocols, the confidentiality loss inherent to a given functionality may partially

or even completely leak secret values without ever violating the security guarantees

of a protocol. Proofs of security generally consider this form of leakage to be intrinsic,

and arguments are made modulo whatever leakage may exist.

While functionality-based leakage may be unavoidable, it is quantifiable. Prior

literature [CMS09; Mar+11; Mar+13a; Mar+13b] has applied various information

flow and optimization techniques to this problem. However, quantifying information

flow [CHM04] over programs is NP-hard and grows in the complexity of the program

state space [KMM13]. As a result, these approaches have remained computationally

infeasible in practice. In addition to these general results, bespoke analyses for individ-

ual protocols or leakage paradigms exist in the literature [Boy+12; HSV20; Alm+21],

but these require manual analysis effort by experts which does not scale.

Contributions. We provide a practical methodology for automatically quantifying and

even optimizing over inherent leakage of a circuit-based functionality. Our tool McFIL

can be used to analyze privacy in MPC, FHE, or ZK. We generalize and extend a series

of techniques developed in Delphinium (§2) in automating chosen-ciphertext attacks

(CCA) in order to bring their work to a far broader class of functionalities.

In summary, our contributions are as follows. We describe McFIL, an algorithmic

approach to quantifying and exploiting information leakage for a given functionality
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(§3.3). We generalize and extend the Delphinium cryptanalysis framework [BZG20a]

presented in Chapter 2 beyond its original domain of strictly-defined predicate func-

tions, addressing key limitations of that work and resolving an open question from it

(§3.3.1). We provide a software implementation [Zin23], as an artifact accompanying

this submission and open-source tool. Our implementation encodes nontrivial domain

knowledge to directly manipulate SAT instances and enable extensive parallelism

(§3.3.2). Finally, we provide SAT instances generated from McFIL and our sample

programs. To promote interdisciplinary research and give back to the SAT research

community, we provide a wide array of problem instances generated by our tool as an

additional artifact. The SAT community gathers such instances as benchmarks [HS00]

to guide future SAT solver development, which will in turn expand the range and

complexity of functions our tool can analyze within a given amount of computation

time (§3.7.1).

3.1 Intuition: Maximizing Leakage

In the following two illustrative examples, we analyze simple functionalities to manually

derive the results which McFIL automates. In the first example, we consider essentially

the simplest possible functionality in an explanatory capacity.

In the second example, we also delve into a novel threat model we term the multi-

run adaptive model. In this model, we assume the adversary or their delegates may

execute a protocol multiple times. As protocols are often proven secure under the

assumption of a single iteration or many non-colluding iterations, this assumption

constitutes a model gap between the threats intended to be prevented and those we

leverage against those protocols. We acknowledge that this gap is non-trivial, but

with it, we demonstrate attacks against otherwise private functionalities. Without
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Figure 3.1: In a fully-automated analysis of Yao’s Millionaires, McFIL “discovers” binary
search. Blue diamonds are adversary inputs, true binary search shown in solid red.

this assumption, McFIL remains useful to analyze and quantify confidentiality loss

as a result of functionality-inherent leakage, and to recover private inputs wherever

single-iteration attacks are admitted. With it, however, McFIL is able to recover partial

or complete secret inputs by leveraging functionality-inherent leakage alone.

3.1.1 A Minimal Example: Binary AND

Consider a simplistic two-party MPC (2PC) protocol which securely computes the

functionality F consisting only of a Boolean AND gate (∧).

Z2 = {0,1}

F :Z2 ×Z2 →Z2 =∧
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a ∈Z2: honest party’s input

b ∈Z2: adversary’s input

x ∈Z2: output (x = a∧b)

Maximizing Leakage. After normal execution, the adversary should have no knowl-

edge of a. However, knowing F=∧, the adversary may a priori choose their input b = 1

to gain complete knowledge of a upon learning x:

x = 0 =⇒ a∧1= 0 =⇒ a = 0

x = 1 =⇒ a∧1= 1 =⇒ a = 1

The choice of b = 1 maximizes the information gained from x. Had they chosen b = 0,

x = 1 would have become impossible for the AND functionality, and thus the output

would provide no information about a. That is, x would be entirely independent of a,

and a would have remained indistinguishable from a random bit to the adversary. By

choosing b optimally, the adversary learns a despite the security of the MPC.

3.1.2 A Further Example: Yao’s Millionaires

Now, consider the classic 2PC example of the Millionaires problem [Yao82; Yao86a].

Two parties (A, B) wish to compare their wealth (say, as 32-bit integers a and b) without

disclosing anything aside from the predicate result of a < b.

Z32 = {0, . . . ,232 −1}

F :Z32 ×Z32 →Z2 = <
a ∈Z32: honest party’s input

b ∈Z32: adversary’s input

x ∈Z2: output (x = a < b)
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Maximizing Leakage. In this example, no single adversary input will uniquely con-

strain the honest party’s input (at least, not in expectation over a uniform distribution

of possible a).

Now, consider b = 231−1. If x = 0 (false), the most significant bit of the honest input

must be 1 as a ≥ 231. Equivalently, if x = 1, then MSB(a)= 0. Assuming uniform a, in

expectation the adversarial input b = 231 −1 eliminates half of the candidate solutions

for a, providing the adversary a single bit of information.

Extending Leakage. On its own, this single bit of information out of 32 bits is

potentially unimportant. The number of possible solutions for a remains large, and

the adversary has no way to distinguish between them.

Intuitively, we next consider: what if the adversary can try again? Although this

extends beyond the original threat model of many secure protocols, it does so with

pragmatism: one can imagine settings where a protocol may be executed multiple times

e.g. in a client-server model, when attempt-limiting protections are missing or evaded,

or when an honest party may unwittingly interact with multiple colluding adversaries.

Maximizing Multi-Run Adaptive Leakage. Given additional attempts (or “queries,”

following [BZG20a]), a binary search emerges from the Millionaires comparison func-

tionality. When the protocol may be repeated, a can be completely uncovered in

log(|Z32|) = 32 queries, violating confidentiality despite a secure protocol, and mak-

ing optimally-efficient use of the newly-assumed threat model of multiple queries.

This should be unsurprising to cryptographers: if security is proven modulo leak-

age, and leakage is allowed to grow, naturally security may be compromised. However,

automatically analyzing and quantifying leakage over many queries is useful in two

ways. First, the more intuitive: if a protocol does admit some method to retry, for

example a smart contract [Woo+14] which may be repeatedly executed or an online
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oracle which does not sufficiently authenticate users, a multi-run leakage amplification

attack may be possible. In this case, McFIL can be used to derive a set of queries to

efficiently exploit leakage. Second, the multi-run setting can be useful in analyzing

protocols which do not admit multiple attempts in that McFIL can compute an aver-

age leakage statistic per query. For arbitrary protocols, the true extent of leakage

may be unknown; McFIL provides a way for practitioners to evaluate functionalities

before choosing to encode them into secure protocols. As demonstrated in Figure 3.1,

McFIL approximately rediscovers this binary search attack to uniquely identify the

target secret input.

3.1.3 Overview of McFIL

Here we provide intuition as to how McFIL uses SAT solving to achieve automated

leakage maximization. Refer to Figure 3.2 for a visualization of our automated workflow.

Building blocks: Delphinium. We previously applied SAT solving to the problem of

Chosen Ciphertext attacks (CCAs) in Delphinium (Chapter 2) [BZG20a]. The method-

ology formulates CCAs as a sequence of optimization problems over the outputs of a

format oracle, automating attacks against classic and novel oracles to exploit CCA

vulnerabilities.

Format oracles are predicate functions which determine if an input is well-formed or

not, and Delphinium exploits this leakage to decrypt. In this chapter, we formulate gen-

eralized functional leakage as a similar sequence of optimization problems. The main

contributions, then, are the necessary adaptations to generalize the prior approach

from predicates (1-bit outputs) to arbitrary n-bit output functions while maintaining

concrete efficiency in real-world target functionalities. Further, Delphinium requires

its format functions to be well-defined (e.g. for all possible inputs, either true or f alse
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Figure 3.2: McFIL workflow; || denotes parallelization

is returned). To accurately capture the breadth of arbitrary functions, we release this

requirement using a novel, concretely-efficient heuristic described in §3.3.1.

Initialization. To initialize McFIL, a Boolean circuit representation of a function func-

tionality must be provided. McFIL uses this formula to determine the range of possible

outputs of the functionality and to configure SAT instances. Compilers exist to facilitate

this process [MB08], and McFIL offers a Python3 Domain-Specific Language (DSL) to

facilitate encoding (refer to §3.6). These instances contain symbolic bits representing
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the “target” secret input(s) to be uncovered (target), and symbolic bits representing the

adversary’s “chosen” input(s) (generated by McFIL) or “queries” (chosen). This gives

the solver freedom to choose chosen inputs subject to the optimization constraints we

apply.

Iterative Solution Elimination. In order to uncover secret input(s) in an automated,

multi-round analysis, McFIL requires access to a concrete instantiation of the func-

tionality. Whether implemented as a test shim for local execution (as we provide in our

implementation) or e.g. a live instance of a secure protocol, this instantiation must

compute the functionality given the adversary’s query and the true secret input(s)

of the honest parties, and provide the result back to McFIL. We refer to this as the

function oracle, and each iteration corresponds to e.g. a single MPC evaluation in the

multi-run adaptive threat model.

Using a SAT solver, these two components alone are sufficient to iteratively con-

strain the search space of the secret input(s). However, the queries generated at

each iteration would be arbitrarily drawn from the set of satisfying models within the

solver – degenerating to a brute-force guessing attack within an exponential search

space. What remains is to optimize the profitability (expected number of eliminated

models [BZG20a]) of each query.

Optimizing Queries. A truly optimal leakage maximization would consider all

possible numbers and contents of queries. However, due to the underlying complexity

of the problem, this approach fails in practice. Existing leakage analysis work in side

channels [Pha+17] attempts to analyze a sliding window of multiple query-like values,

and reaches computational limits in 8-bit secret domains. Therefore, we consider only

maximizing at each iteration: a greedy-optimal approach.
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In order to maximize profitability at each iteration, we employ Max#SAT to simul-

taneously maximize the number of satisfying solutions for target corresponding to all

possible outputs of the function under test. McFIL then iteratively derives function

inputs which imply partitions of the solution space, and eliminates one of the subsets

of each partition based on the result from the function oracle.

Max#SAT, described in detail in §3.2, is a counting-maximization analogue to

Boolean Satisfiability (SAT) which can be efficiently, probabilistically approximated as

demonstrated by Fremont et al. [FRS17]. Crucially, these approximation algorithms

can themselves be efficiently encoded into SAT constraints [BZG20a]. By using these

approximations as constraints in SAT instances, McFIL probabilistically and approx-

imately ensures that a large number of satisfying solutions exist for given symbolic

variables.

Extracting a Model. With all constraints in place and an unknown target, a satis-

fying solution (or “model”) for chosen is extracted from the solver. The maximization

constraints ensure that chosen is selected approximately optimally: for each possible

output of F(chosen,target), many candidate models for target exist.

Given only a symbolic representation of target, F cannot be used to compute

a concrete result. However, when the concrete protocol instantiation – containing

knowledge of the true value of target – is executed with the adversary’s chosen in-

put, a single outcome result is returned. Then, all candidate solutions for which

F(chosen,target) ̸= result may be eliminated. Critically, due to the maximization

constraints, this set of eliminated candidates will be large.

Eliminating Candidates. After each query, all candidate models for target incon-

sistent with each (chosen,result) pair are eliminated. That is, they are no longer

satisfying solutions for target in the evolved constraint system. This leads to a greedy
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algorithm in expectation, iteratively reducing the target search space in maximized

increments.

Beyond Predicates. Problematically, the Delphinium algorithm is restricted to

predicate functions, and intrinsically requires that for all chosen, every possible output

for F is reachable. We refer to this informally as completeness:

∀chosen,result ∃target

s.t. F(chosen,target)= result

This completeness restriction is often trivial for predicates. While this is sufficient for

chosen-ciphertext attack discovery [BZG20a], as the relevant padding/format functions

are generally predicates which determine message validity, arbitrary functionalities

are not necessarily so amenable. Further, Delphinium requires the operator to carefully

define Boolean formulae to adhere to this notion of completeness, requiring additional

effort and expert insight. We describe this challenge and our approach to generalize

and extend Delphinium in §3.3.1.

Negative Results: Demonstrating Security. Depending on the functionality, it may

be impossible to differentiate any classes of candidates; McFIL detects this and provides

a message that the attack may proceed as “brute-force.” This negative result can also

be taken as an indication that leakage is bounded for the given functionality. If little

enough of the private input is derived before brute-force is required, this may be taken

as a probabilistic argument for the security of the functionality against leakage-based

attacks.
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(x1∨−x2∨ x3)∧ (x1∨ x2∨−x3) ∧

(−x1∨−x2∨−x3)∧ (−x1∨ x2∨ x3)

Figure 3.3: CNF of x1⊕ x2= x3

3.2 Technical Background

In this section, we discuss SAT, its extensions, and their relative complexity. We also

highlight software tools solving or approximating these problems which have emerged

from the SAT research community, and describe their relevance to McFIL. Finally,

we review the limited past works which have broached function-inherent leakage and

faced computational-feasibility limitations.

3.2.1 SAT and SMT

Boolean Satisfiability. SAT is a widely-known NP-complete problem. SAT takes as

input a Boolean formula which relates a set of binary input values through Boolean

operations. A solution to SAT is an assignment (also called a model, solution, witness,

or mapping) of true and false (eq. 1 and 0) values to the Boolean inputs which causes

the formula to evaluate to true. SAT formulae are commonly organized to include

only And, Or, and Not operations in Conjunctive Normal Form (CNF) [Tse68]. Any

propositional formula can be efficiently converted into CNF preserving satisfiability,

although conversion may introduce a linear increase in formula size [Tse68]. In CNF,

literals represent binary input values, and may be negated (denoted with −). These

literals (negated or otherwise) are grouped into disjunctions (Or), which are themselves

grouped into a single conjunction (And). In short, CNF is an “and of ors.” Refer to

Figure 3.3 for an example.
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SAT Solvers. SAT solvers are tools designed to determine the (un)satisfiability of

Boolean formulae. SAT solvers often require CNF, and provide a model in the event

the formula is satisfiable. The model is not guaranteed to be unique (and often is not).

Due to the generality of NP-complete problems [Coo71], SAT solvers are powerful

tools. Since 1962, the DPLL [DLL62b] method of backtracking search has served as the

core tool in SAT solving, with the more recent development of Conflict-Driven Clause

Learning (CDCL) [SS96] in 1996 aiding in optimizing the search for a satisfying model

or contradiction indicating UNSAT.

Satisfiability Modulo Theories. Given a SAT solver, the task remains to translate

problems of interest into Boolean formulae. In order to aid translation, SMT solvers

were developed. SMT solvers add expressive domains of constraint programming to

SAT such as arithmetic and bitvector (bitwise operations beyond single Boolean values)

logic. SMT solvers such as Z3 [MB08] have enabled solving problems ranging from

program verification [CDE+08; Sho+16; GLM12] to type inference and modeling, and

more.

3.2.2 Extensions to SAT

Despite the expressive power of SMT solvers, program analysis alone is insufficient for

McFIL as we derive optimizations over the target circuit. As we maximize over a solution

space of program results, McFIL generates instances of Max#SAT (described in this

section) from the Boolean formula describing the functionality under test. Intuitively,

Max#SAT is a strictly more complex problem than SAT, but can be approximated using

the recent technique of Fremont et al. [FRS17] and a SAT solver. In this section we

provide technical background describing SAT through Max#SAT.

SAT to #SAT. #SAT, pronounced “sharp SAT,” is the counting analogue to SAT. Also
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Definition 4: Max#SAT(φ, X ,Y , Z)= X max,max
Input: φ: Boolean formula;

X ,Y , Z: Vectors of Boolean inputs to φ
Output: X max: Assignment (concrete Boolean values) of variables in X for

which the number of satisfying solutions to variables in Y is
maximized and at least one satisfying solution exists in Z;

max: Number of satisfying solutions for Y
(0≤ max ≤ 2|Y |)

referred to as model counting, #SAT asks not only if a satisfying model exists, but how

many such models exist. The result lies in a range from 0 for an unsatisfiable formula,

to 2n for a (completely unconstrained) formula over n bits. #SAT is #P-complete, at least

as difficult as the corresponding NP problem, but this phrasing belies its complexity:

Toda demonstrated PH ⊆ P#P [Tod91], that a polynomial-time algorithm able to make a

single query to a #P oracle can solve any problem in PH, the entire polynomial hierarchy

(which contains both NP and co-NP) [Sto76].

#SAT to Max#SAT. Max#SAT (denoted in Definition 4) is the optimization analogue

to the #SAT counting problem. As defined by Fremont et al., Max#SAT takes a Boolean

formula, denoted φ, over Boolean variables divided into three notional subsets X ,Y , Z.

A solution to Max#SAT provides a model for the variables in X such that the count

(number of models) of the variables in Y is maximized and at least one model exists

for the variables in Z. (Z exists to allow variables to remain in the SAT instance,

yet outside the optimization constraints). A Max#SAT solution is particularly useful

when X refers to input variables to the formula, meaning that a model for X could be

provided as an input to a program represented by the circuit φ. Correspondingly, Y

should be configured to contain variables of interest for maximization such as those

representing quantitative information leakage, probabilistic inferences, or program-

synthesis values [FRS17].
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Approximating Max#SAT. Max#SAT is at least as complex as #SAT [FRS17; Tod91],

but as Fremont et al. demonstrates, this does not prevent approximating Max#SAT us-

ing a number of calls to an NP oracle – or in concrete terms, a SAT solver. To ap-

proximate Max#SAT, Fremont et al. rely on a sampling technique first described by

Valiant [Val79b], and expanded upon (and implemented in software) by Chakraborty

and Meel et al. [CMV16b] and Soos [SM19]. By applying almost-uniform hash func-

tions [Val79a; SM19], which representatively sample a domain with error, a non-

uniform search space can be proportionately sampled with bounded error to enable

a more feasible count. Crucially, these hashes can be efficiently sampled and applied

within a SAT solver [Cha+14b]. This approach is central to McFIL: using almost-

uniform hash functions as constraints within the formula, large classes of models for

target can be identified and iteratively eliminated.

3.2.3 Prior Work

Functionality-based leakage is a known problem, although practical quantification

methods are lacking in the literature. Clarkson et al. [CMS09] analyze adversary

knowledge of private MPC inputs using quantified information flow, but provide only

a theoretical treatment of the problem. This idea was later explored by Mardziel et

al. [Mar+11; Mar+13b; Mar+13a] in their attempt to maximize adversary knowledge

through probabilistic polyhedral optimization. Although their solution is theoretically

robust, Mardziel et al. note the “prohibitive” computational cost of their approach in

practice [Mar+13b].

SAT solving has also been applied to MPC in the recent literature, however, with

particular focus on the intermediate values generated during protocol execution. These

intermediate values may leak some degree of information, which has been quantified

using information flow [Ras+13] and language-based formalization methods [Alm+18].
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Further, when intermediate values can be determined to leak only negligible infor-

mation, prior work has shown they may be computed “in-the-clear” as an optimiza-

tion [Ras+13].

Quantitative information flow, program analysis, and other automated approaches

have also been applied in the detection and mitigation of side-channel leakage vul-

nerabilities. These vulnerabilities are similar to function-inherent leakage in that

they provide additional signal which may compromise private inputs based on the

(otherwise secure) execution of a function. A recent systematization [Buh+22] of

side-channel detection literature enumerates various techniques ranging from micro-

architectural modeling or even reverse engineering to program-analysis-like tools to

analyze hardware descriptor languages for potential side channels. One such work,

SLEAK [WHK14], computes a statistical distance between secret values and active

intermediate values in the processes using a full-system simulator. The information-

theoretic metric of leakage they compute is likely correlated with the leakage which

McFIL is able to uncover and maximize, however, their approach requires hardware

simulation and a compiled binary, neither of which may be available or even relevant

to target functionalities intended to be executed e.g. within an MPC.

3.3 McFIL

In this section, we describe our primary contribution, McFIL. We introduce the novel

SelectOutcomes prioritization subroutine which extends the Max#SAT-based approach

beyond complete predicate functions and enables its use in the domain secure protocols

such as MPC, FHE, and ZK.

Attack Model. An ideal approach to identifying leakage would allow for the quan-

tification of useful leakage after one round of execution. For novel function circuits,
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Figure 3.4: Architecture of McFIL

this analysis can inform operational security requirements and privacy considerations.

However, in many cases a functionality will be executed multiple times on identical

(or related) inputs (this can occur in some protocols by design; alternatively it may

occur through deception, corruption of honest parties, or a failure of access control).

Ensuring the safety of all private inputs in these cases can also be seen as a form of

defense-in-depth. For this setting, a multi-run adaptive model allows McFIL to extract

more information about the privacy implications of a given Boolean circuit, whether

the goal is to evaluate the safety of allowing untrusted parties to execute the protocol

repeatedly (to automate an attack), or simply to to quantify and bound overall leakage.

System Architecture. Figure 3.4 depicts the architecture of McFIL. Our tool inte-

grates a custom CNF manipulation toolkit (solver.py) which efficiently represents

constraints and orchestrates parallel solving instances.
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3.3.1 Beyond Predicate Functions

In Delphinium [BZG20a], a format oracle classifies inputs as either valid or invalid

according to a format specification and a predetermined fixed input length l. This

requires format specifications to be complete and deterministic. Completeness requires

that for every possible bit string of length l, the format function returns exactly one of

true or false. Determinism requires that any input to the format function will always

be classified the same way. As a result, the format function defines a two-set partition

of the space of bit strings of length l, with the two sets corresponding to true and false

under the format, respectively. Taken together, the requirements of Delphinium ensure

that at each iteration, the SAT formula will remain satisfiable as long as a query exists

which can differentiate at least some true and false partition elements.

Challenge Intuition. Clearly, arbitrary functions may be more complex than predi-

cates. To address this, a natural first idea is to implement a third possible response

(in addition to true and false), e.g. error. By introducing an “error” class, outputs

could be simplified and the completeness requirement removed. However, adding a

third output class raises a unique challenge previously left to future work.

McFIL seeks to simultaneously maximize the number of secret inputs which cor-

respond with all n output classes, such that each round, up to ≈ 1
n of candidates may

be eliminated in expectation. However, with the introduction of an error class and

relaxed function definitions, the guarantee of simultaneous satisfiability is lost. For

example, it may be that an input exists where some candidates would evaluate to a

given output, and the rest to error, but none to another output. Delphinium requires

simultaneous satisfiability of all classes, and so the resulting UNSAT result immediately

halts progress.

This idea of three output classes is also only a specific instance of a much more
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general challenge. For arbitrary functions with n-bit outputs, predicates represent

only n = 1. For functions with arbitrary output length n > 1, the number of simulta-

neously satisfiable classes is entirely dependent on function itself; as a result, naïve

simultaneous maximization fails or reaches computational limits.

A First Step: DeriveOutcomes. Functions with n-bit outputs have a maximum of 2n

possible output values. However, for many functionalities the actual number of possible

outputs is much lower. A natural example is a classification function: each class may

be described by a long bit-string (a long output), but only a few classes may exist.

Detecting and exploiting these cases contributes to McFIL’s practical applicability.

At each iteration of an attack, the number of possible outputs defines the number

of simultaneous maximization constraints which must be satisfied. Therefore, we

provide the DeriveOutcomes subroutine, which uses the SAT solver to enumerate the

possible outputs of the functionality. We perform this step one time at initialization

(the Configure Outcomes step in Figure 3.2), dramatically reducing constraint system

size from the 2n maximum in many cases.

Analysis of DeriveOutcomes. DeriveOutcomes is executed once at the beginning of

the McFIL workflow. It iterates over all 2n possible outputs of the target n-bit output

functionality in order to eliminate unreachable outputs. Although this can be con-

cretely expensive, many functions with n-bit outputs do not entirely cover their range;

eliminating large classes of unreachable outputs dramatically improves performance

for the remainder of McFIL’s steps. Additionally, this step can be skipped, and partial

completion still benefits computation time significantly.

Optimizing Leakage: Straw-man Solution. With the set of possible outputs derived,

it remains to eliminate large classes of candidates across these output classes at each

iteration. Otherwise, the attack is approximately brute-force and therefore highly
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inefficient. If all N ≤ 2n classes cannot be simultaneously differentiated from one

another by a single query, the straightforward next step would be to differentiate as

many classes as possible.

Here we reach the next challenge: choosing an optimal subset of output classes.

The number of subsets of a set of N values is 2N , i.e. 22n for n-bit outputs. Even if

DeriveOutcomes eliminates many outputs to reduce N, the exponential size remains

problematic for performance. This combinatorial space is far too large to efficiently

iterate through – worse, doing so would be required at each iteration due to evolving

constraints. As a result, in order to support non-predicate functions which may contain

mutually-exclusive outcome classes, optimality must be sacrificed in favor of an efficient

heuristic which performs well in practice.

Solution Intuition. To avoid a combinatorial search, a heuristic must be employed.

However, the accuracy of the heuristic directly impacts the profitability of the result-

ing query, and thus warrants specific analysis and consideration. The intuition for

this heuristic (which we refer to as SelectOutcomes) is to remove outcomes from the

simultaneous maximization constraint system while minimally affecting profitability.

To achieve this, we perform Model Counting (#SAT) on the solution space of each

outcome individually. Each result corresponds to the maximum number of candidate

models which might be eliminated by including that outcome in the simultaneous

maximization. We sort all outcomes by their individual sizes, and remove them in

ascending order until a simultaneously satisfiability subset is found.

Of course, this approach may miss an ideal configuration of outcomes. However,

avoiding combinatorial search is necessary, and in our evaluation (§3.4), we demonstrate

that profitability remains sufficient to discover efficient attacks.
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Algorithm 5: SelectOutcomes
Input: Solver: SAT solver, Pool: multi-processing pool, F: formula for

functionality, O: set of outcomes from DeriveOutcomes
Output: O∗: set of mutually-compatible outcomes w/many candidate target,

for use in maximization constraints
O∗ ←∅;
for i ← 1 to |O| do

Oi ← ith element of O;
Solver.constrain(Oi =F(chosen,target));
// generate CNF for ApproxMC
φi ← Solver.cnf();
// remove constraint for next iteration
Solver.pop();
// call ApproxMC in parallel
Pool.apply_async(ApproxMC,φi);

// for each outcome and its ApproxMC count
for (Oi, cnt) in Pool.results() do

if cnt > 0 then
// satisfiable single outcome
O∗.add((Oi, cnt));

O∗ ← sort O∗ by cnt ascending;
while |O∗| > 1 and not Solver.satisfiable(O∗) do

O∗.drop_first();
// largest simultaneously satisfiable set
return O∗;

SelectOutcomes. To realize this heuristic, documented in simplified form in Algo-

rithm 5, we employ a powerful tool from the recent SAT solving literature: ApproxMC.

ApproxMC [SM19] (“Approximate Model Counting”) is a tool which takes a CNF Boolean

formula and rapidly provides an approximation of the formula’s model count. ApproxMC

can count complex formulae in a fraction of the time it takes to compute maximization

constraints to count formulae. However, it cannot completely supplant maximization:

ApproxMC is an external tool which uses sampling to provide approximate counts;

there is no known way to efficiently encode iterative sampling within the solver as a

constraint, and it is unlikely a method exists due to the data-dependent nature of the
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ApproxMC sample-and-iterate strategy.

By iterating through the remaining satisfiable outcomes at each iteration of the

attack and invoking ApproxMC, we ensure that simultaneous maximization still oc-

curs among as many large classes as can be efficiently identified. Further, we employ

process-level parallelism to amortize this sequence of ApproxMC calls. ApproxMC con-

figuration parameters can also trade off single-instance computation time for accuracy

if needed. Once a set of mutually-compatible outcomes is found, the attack proceeds

with simultaneous maximization using Max#SAT. The resulting query is extracted

and executed in the to produce a result. By design, this result tends to eliminate a

large class of remaining candidate solutions. In the event the result corresponds with a

removed outcome class, relatively little knowledge is gained. However, as the removed

outcome classes are the smallest, the likelihood that an arbitrary query induces a

removed outcome is minimized over a distribution of possible target values.

Algorithm 5 documents the SelectOutcomes heuristic. In the first loop, each outcome

is individually constrained to generate a set of formulae using our CNF manipulation

interface and the underlying SAT solver, resetting the solver after each iteration to in-

dividually test each outcome. Parallel tasks are dispatched to perform ApproxMC counts

of the bits corresponding to the target variable in each formula (bit correspondence

requires formula manipulation, omitted for clarity). These results for each outcome

are sorted, and until a simultaneously-satisfiable subset is found (more complex than a

satisfiability check, but omitted for clarity), the outcomes with the smallest number

of candidate target solutions are eliminated. Finally, the usable subset O∗ ⊆ O is

returned.

Analysis of SelectOutcomes. Delphinium avoids the need for any such heuristics by

strictly requiring well-defined and inflexible problem statements. As a result of these
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strict requirements, the authors of Delphinium are able to formally prove, probabilis-

tically and approximately, a greedy-optimal algorithm. McFIL enables a far broader

scope of functionalities to be analyzed and attacked. Further, reducing the restrictions

on the formulae input to McFIL reduces the operator effort and expertise required. By

allowing significantly more flexibility in terms of functionality choice and reducing the

modeling work required, McFIL sacrifices formal optimality for generality, performance,

and practicality.

3.3.2 Implementation

Algorithm 6: McFIL Algorithm Overview
Input: F: Boolean circuit with target and chosen input(s), O: Oracle access to

functionality with hidden target input
Output: I∗: set of Boolean circuit inputs (vectors of Booleans) for chosen which

maximize leakage of target in F

I∗ ←∅;
out ← DeriveOutcomes(F);
while # of solutions for target > 1 do−→

sel ← SelectOutcomes(F, out);
query← Maximize(chosen,F,

−→
sel);

result ←O(query);
F.AddConstraint(F(query,target)= result);
I∗.add(query);

return I∗;

McFIL consists of under 2 KLoC of new Python3 which leverages process-level paral-

lelism at every opportunity. Each of the multiple linear parameter-sweep searches from

the Delphinium software implementation is replaced with parallel execution, and any

other code from the prior work is rewritten improving efficiency, clarity, and correctness.

Parallelizing McFIL is non-trivial, requiring a reorganization of data-dependencies

(CNF generation prior to solving) in the software pipeline of prior work. We introduce

a CNF translation layer to readily convert SAT instances and even individual CNF
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clauses and literals between the two SAT solvers we employ, CryptoMiniSat and Z3,

to reap the relative benefits of each (performance and flexibility, respectively). Our

implementation includes a test shim for simulated execution of protocols, and a con-

venient command-line interface encapsulating numerous configuration options. It is

available as open source software on GitHub [Zin23]. Algorithm 6 provides a high-level

pseudo-code overview of McFIL using the subroutines described in Section 3.3.1.

CryptoMiniSat. CryptoMiniSat [SNC09] (CMS) by Soos et al. is a SAT solver designed

for cryptographic use-cases. Specifically, CMS includes optimizations for rewriting and

processing X or operations which otherwise incur exponential overhead in the number

of operands of a CNF representation. Specifically, an n-term X or expands to 2n−1 CNF

clauses.

We evaluate McFIL in §3.4 and provide wall-clock computation time to illustrate the

practicality of attack generation when using CMS. We confirm the observation from Del-

phiniumthat SAT instances containing X or-dense maximization constraints execute

up to an order of magnitude faster in CMS than Z3, and for larger (longer-running)

problem instances our parallelized query search offers additional multiplicative factors

of time savings.

Z3. Z3 [MB08] is an SMT solver which provides extensive and robust software support

for Boolean formula manipulation and solving. It is a general-purpose solver which

supports arithmetic, bit-vector, and other common theories for ease of use in translating

general problems to SAT. We use Z3 for its bit-vector theory support and other tooling.

However, Z3 lacks key optimizations which accelerate solving the the particular X or-

dense maximization formulae we require. As a result, after formula preparation in Z3,

we generate and export a CNF and use CMS for solving, and then recover results back

into Z3 for the next round of constraint manipulation.
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3.4 Evaluation

To evaluate McFIL, we assess our implementation against a range of functionalities,

from simple motivating examples such as the classic Yao’s Millionaires problem [Yao82]

to the recent practical instantiation of MPC developed by researchers at Boston Univer-

sity with the Boston Women’s Workforce Council (BWWC) to measure wage equity in a

manner which preserved the privacy of participants’ salaries [Lap+16]. The success of

McFIL in partially or completely deriving confidential inputs across these functional-

ities demonstrates its usefulness as a tool for practitioners and researchers alike in

performing privacy analysis of secure protocols.

3.4.1 Selected Functionalities

The following selected target functionalities are used to evaluate McFIL. Implementa-

tions of these functionalities are provided in the open source release using a simple

Python3 domain-specific language to describe Boolean formulae. Samples of this DSL

can be found in §3.6. We provide additional illustrative samples used in our evaluation

in our open source release [Zin23]. These implementations may be useful for further

analysis, or to serve as templates for translating new functionalities.

Evaluated Functionalities. Table 3.1 lists the evaluated functionalities and the

search space size of each corresponding hidden target value. Relatively smaller search

spaces were chosen compared with what is practically achievable in reasonable wall-

clock time. This allowed evaluation of computation bottlenecks in McFIL while keeping

overall evaluation runtime feasible for many randomized repetitions. McFIL outputs

estimated leakage per query, useful for evaluating functionalities after only a single

iteration of the tool. CNF size growth (in # clauses) across input sizes is demonstrated

in Table 3.2 to inform extrapolations.
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Table 3.1: McFIL Evaluated Functionalities

Functionality target Leakage
Yao’s Millionaires 232 230±1

Dual Execution 212 210 −211

Danish Sugar Beets Auction 214 – 256 up to 254

Bucketed Mean 232 223±1

Wage – Circuit Division 236 234±1

Wage – Standard Division 236 234±1

Mean Average 28 20 −21

Refer to §3.4.1. Smaller domain sizes (target) were chosen to allow many randomized
trials. Leakage conservatively estimates eliminated candidates per query, calculated

in a single iteration of McFIL.

3.4.1.1 Millionaires Problem

The Millionaires problem introduced by Yao [Yao82] describes two millionaires, Alice

(A) and Bob (B), who wish to compare their wealth without revealing it. Each has a

corresponding input, their net worth represented as 64-bit integers a and b, respectively.

The functionality to be computed in this simple example is the comparison operation

less-than. Thus, at the end of the two-party computation, A and B learn the result of

the predicate a < b, but learn nothing of each other’s input.

This functionality clearly enables a binary search, and the resulting exponential

decreases in the search space per query confirm the attack algorithm’s approximate

optimality (§3.6.1). We implement this functionality within millionaires.py. The at-

tack is not particularly subtle, and could certainly be developed and executed manually.

However, the example is illustrative, demonstrating the SAT solver rediscovering the

known optimal attack without interaction or guidance.
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Table 3.2: CNF Size in Clauses over Target Bits

Functionality 8-bit 16-bit 32-bit 64-bit
Yao’s Mill. 47 95 191 383
Dual Exec. 875 3539 14243 57155
Danish.∗ 2746 6500 8701 14020
BM 457 561 769 1185
WCD ** ** 2178 5351
WSD 60 749 7705 42417
MA 191 399 815 1647

Refer to overview and descriptions in §3.4.1.
∗Due to encoding, the Danish Sugar Beets functionality was measured at 12, 28, 42,

and 60 bits.
∗∗The BWWC WCD function reorganizes division into a multiplication circuit which

overflows for small bit-widths.

3.4.1.2 Dual Execution

Dual Execution [MF06] is an MPC technique which enables conversion of semi-honest

secure protocols into malicious secure-with-abort protocols incurring only a single bit

of additional leakage. The technique involves both parties in a 2PC garbling a Boolean

circuit and sending each other the circuit and necessary data for its evaluation. Both

circuits are evaluated, and then a secure comparison protocol informs both parties

if the outputs matched. If they do not, the protocol is aborted. The additional bit of

leakage comes from the abort, which informs an adversary that the garbled circuit it

sent to the honest party did not match the output of the one generated by the honest

party – this knowledge can be leveraged to leak a bit of the honest party’s private input

upon each execution.

To implement this part of the adversary’s input string is considered to be an encoded

program. This program represents the divergent functionality the adversary may

choose. For simplicity, we limit the adversary to affine transformations, which can be

realized through a matrix multiplication. The complexity of function is entirely up
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Table 3.3: Evaluation Results

Functionality target Size Queries Mean S.D. Time Speedup
Millionaires 264 69 – 97 84.7 8.5 ≈ 3m 2×
Dual Execution 212 17 – 80 34.9 12.9 ≈ 0.5m 1.5×
Sugar Beets 228 13 – 13 13.0 0.0 ≈ 5m 4−5×
Bucketed Mean 232 35 – 58 36.7 6.4 ≈ 6m 10×
Wage 236 18 - 29 22.4 5.8 ≈ 5m 1.5−2×
Wage (cir. div.) 236 19 – 26 22.3 5.0 ≈ 0.5m 1.5−2×
Mean Average 28 2 – 3 2.5 0.5 ≈ 2.5m 0.8−1.2×

target uncovered ...partially ...completely
Size denotes the size of the target domain. Average time (in minutes) given for full

attack, not per-query. Minimum and maximum queries listed with Mean and Standard
Deviation. Average queries reported over ≈ 100 randomized trials. ‘Speedup’ denotes

approximate wall clock time savings through parallelization.

to the adversary, however, allowing configurability is preferable in the dual execution

setting where the honest party must be expected to believe they are executing an

honest circuit rather than expecting an abort due to a mismatched equality check. The

adversary then provides both its own input and the “code” the honest party will execute.

McFIL is able to uncover all bits of the private input in very few queries (§3.6.1), even

with the limitation to affine functions.

3.4.1.3 Danish Sugar Beets Auction

The first widely-known practical use of MPC was reported in 2009, when the Danish

sugar beets auction was deployed as an MPC. The purpose was to replace the work of a

trusted-by-necessity auctioneer with secure computation. The functionality takes in a

set of buyer and seller orders to determine the Market Clearing Price. An order consists

of a set of prices and the number of units (e.g. tons of sugar beets) a buyer/seller is

willing to buy/sell at each price. The Market Clearing Price is the equilibrium price at

which optimal volumes of sugar beets are exchanged. The functionality is characterized
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by a matching of buyer and seller prices weighted by the units at each price.

In this protocol, there are a configurable number of buyers and sellers, and we

leverage this to test McFIL in the multi-party MPC setting (rather than two-party

computation). When modeling adversarial participants, McFIL expresses all adversary

inputs as a single vector of Boolean variables over which it determines structure and

exploits leakage based on the functionality (Market Clearing Price calculation). This

encodes the well-understood behavior of colluding malicious participants in an MPC.

We implement this within sugarbeets.py.

3.4.1.4 BWWC

Collaborating with the Boston Women’s Workforce Council (BWWC), Lapets et al. at

Boston University recently developed and deployed an MPC system to detect gender-

based wage inequity [Lap+16]. This system allowed companies to privately share

aggregate statistics about employee roles, salaries, and gender. The goal was to compu-

tationally identify and measure gender-based wage discrimination without requiring

any participating companies to directly demonstrate fault. Their design, robustly

proven secure under standard assumptions, is an MPC which computes a simple sta-

tistical test among each comparable role across companies. By design, their system

protects the privacy of each salary data point.

For this target, we developed two aggregation functions inspired by the functional-

ity described. The first was a bucketed mean computation (mean_buckets.py) which

averaged the two inputs and then returned a result representing the number of fixed-

size buckets apart the query is from the updated mean. This bucketing procedure

implements a non-predicate functionality in which many outcomes are simultaneously

satisfiable, exercising the attack algorithm in this regard. The second averages two

contributed salary data points (one honest input, one adversary) into a large aggregated
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salary, and then informs the querying adversary if their contributed salary is below

the updated mean. This functionality enables the attack algorithm to derive a binary

search for the honest input as demonstrated in the results section (§3.6.1).

We developed two forms of this second function, one (wage_circuit_div.py) with

the division reorganized into a multiplication in the mean computation, and the other

(wage.py) with regular integer division inside the solver. Division steps dominate the

complexity of this functionality, as demonstrated by the difference between BWWC

functions 2 and 3 in Table 3.1. Finally, we implemented a plain mean average (mean.py)

function (BWWC function 4 in the Table) to evaluate a function with maximal (2n)

possible outputs for an n-bit target. Despite the small size of the secret in this case,

computation time increased due to the large output domain as demonstrated later in

this section.

3.5 A Note on Zero-Knowledge Range Proofs

Note on ZK Range Proofs. A range proof [Bün+18] is a computational proof that a

value lies within a given range. Range proofs can be performed in zero-knowledge proto-

cols, meaning that the verifier learns nothing of the value being tested, only the result

of the computation. Such zero-knowledge proofs are useful in anonymous payment sys-

tems which require aggregate payment validation without betraying information about

individual payments to the broader payment network [Sas+14]. These zero-knowledge

proofs can be considered a 2PC between a prover (holding a secret value) and a verifier

(holding a range to be tested against the value) wherein the functionality executed is

the aforementioned range validation check and the privacy of the prover’s value must

be maintained. The logic of a range proof effectively matches that of the Millionaires

problem, and so this target is included simply to highlight McFIL’s capacity to analyze
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Figure 3.5: Remaining candidate solutions per query in a single trial of 64-bit Yao’s Millionaires

a ZK protocol. We offer our software implementation as a tool to researchers and

developers of novel ZK protocols as a method to evaluate privacy loss.

3.6 Solver Domain-Specific Language Examples

Building off of the pattern established in Chapter 2 (§2.9), we provide examples of

using our supportive tooling to encode functionality for analysis in McFIL.

Python3 DSL example for Yao’s Millionaires:
def func_smt(solver, chosen_input, target_input):

# Millionaire's functionality inside the solver
return solver._if(solver._ugt(chosen_input, target_input),

solver.bvconst(1,OUTCOME_LEN),
solver.bvconst(0,OUTCOME_LEN))
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def func(chosen_input, target_input):
# Millionaire's functionality outside the solver
return chosen_input > target_input

Python3 DSL example for Dual Execution (affine predicates):

def func_smt(solver, chosen_input, target_input):
# isolate adversary-chosen function (matrix) from adversary-chosen input
matrix_bits = solver.extract(chosen_input, CHOSEN_LEN-1, TARGET_LEN)
chosen_input = solver.extract(chosen_input, TARGET_LEN-1, 0)
# unpack matrix values
matrix = [[solver.extract(matrix_bits, j*TARGET_LEN+i, j*TARGET_LEN+i)

for i in range(TARGET_LEN)] for j in range(TARGET_LEN)]
chosen_bits = [solver.extract(chosen_input, i, i) for i in range(TARGET_LEN)]
target_bits = [solver.extract(target_input, i, i) for i in range(TARGET_LEN)]
# perform mults
chosen_matrix = [reduce(lambda x, y: solver._add(x, y),

[solver._mult(matrix[j][i], chosen_bits[i])
for i in range(TARGET_LEN)])

for j in range(TARGET_LEN)]
target_matrix = [reduce(lambda x, y: solver._add(x, y),

[solver._mult(matrix[j][i], target_bits[i])
for i in range(TARGET_LEN)])

for j in range(TARGET_LEN)]
# re-pack matrices
chosen_out = solver.concat(*reversed(chosen_matrix))
target_out = solver.concat(*reversed(target_matrix))
# evaluate equality check
return solver._if(solver._eq(chosen_out, target_out),

solver.bvconst(1,1),
solver.bvconst(0,1))

def func(chosen_input, target_input):
matrix_bits = chosen_input >> TARGET_LEN
chosen_input = chosen_input & ((1 << TARGET_LEN)-1)
matrix = [[(matrix_bits >> (i+TARGET_LEN*j)) & 1 for i in range(TARGET_LEN)]

for j in range(TARGET_LEN)]
chosen_bits = [(chosen_input >> i) & 1 for i in range(TARGET_LEN)]
target_bits = [(target_input >> i) & 1 for i in range(TARGET_LEN)]
chosen_matrix = [sum([(matrix[j][i]*chosen_bits[i])%2 for i in range(TARGET_LEN)])

% 2
for j in range(TARGET_LEN)]

target_matrix = [sum([(matrix[j][i]*target_bits[i])%2 for i in range(TARGET_LEN)])
% 2

for j in range(TARGET_LEN)]
chosen_out = 0
for i, bit in enumerate(chosen_matrix):

chosen_out |= bit << i
target_out = 0
for i, bit in enumerate(target_matrix):

target_out |= bit << i
return 1 if chosen_out == target_out else 0
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3.6.1 Evaluation Results

In this section, we evaluate McFIL by measuring its effectiveness in uncovering pri-

vate target input(s) in the selected functionalities. Table 3.3 provides a summary of

evaluation from repeated trials with random target values.

In each case, we include a graph denoting the decrease per query in remaining

candidate solutions for target. These measurements are generated by ApproxMC,

the approximate model counter of Soos et al. [SM19], over the course of a multi-run

(representing multiple MPC executions, one per query) attack.

Process-Level Parallelism. McFIL uses parallelism in two key subroutines, one being

SelectOutcomes and the other in computing the chosen query at each iteration. For an

n-bit target, SelectOutcomes spawns one process per possible outcome (up to 2n), and

computing the query replaces an O(n) linear parameter sweep from Delphinium with n

parallel solving instances. For details on hardware, refer to §3.7.

3.6.1.1 Millionaires Problem

As previously discussed, the Yao’s Millionaires functionality consists of a comparison

between the adversary and hidden inputs. This enables a binary search which, as

seen in Figure 3.5, eliminates approximately half of the remaining candidates at each

iteration. The linear descent of the graph on a logarithmic scale captures the efficiency

of the attack, resulting in approximately log(n) queries for an n-bit target.

Parallelism in the attack generation pipeline achieves an approximately 2× speedup

in the Millionaires functionality. Savings occur in the parallel ApproxMC of the two

outcomes in the SelectOutcomes heuristic. In this case, however, the heuristic is not

required as the comparison predicate is complete and the two outcomes are not mutually

exclusive. As a result, McFIL incurs additional overhead in exchange for its ability
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to handle mutually-exclusive outcome classes. We have added software arguments to

configure (optimize) McFIL when the functionality is known to be complete.

3.6.1.2 Dual Execution

In this attack, McFIL generates a sequence of matrices and inputs in order to rule out

candidate target inputs. Effectively, this attack creates an increasingly large system

of linear equations choosing the coefficients and half the unknowns (chosen) at each

step.

Figure 3.6 demonstrates the approximately logarithmic decreases of the remaining

target search space over the course of an iterative attack. The plateaus visible in the

graph further support the idea that there may be points at which McFIL is effectively

“guessing and checking” within the available information, and once these guesses

succeed (after 2-3 attempts, in the visualized attack) the following queries are able to

eliminate a large quantity of candidate solutions.

3.6.1.3 Danish Sugar Beets Auction

In the Danish Sugar Beets Auction functionality, not all target bits are uncovered.

Figure 3.7a in §3.7 denotes the rapid descent of remaining candidate solutions on a

log scale, however, the attack does not reach 20 = 1 (a unique solution). This seems to

result purely from insufficient leakage (or, sufficient privacy) of the functionality. At the

extremes of low and high prices, McFIL is able to determine the honest buyers/sellers

bids for numbers of units. However, at middle prices closer to the likely equilibrium

Market Clearing Price, McFIL fails to distinguish and some bits remain unknown.

In this example, we configured the adversary to control 3 buyers and 3 sellers,

and the honest party to control 1 buyer and 1 seller. The adversary’s goal (and there-

fore McFIL’s target) was to uncover the prices and numbers of units of the honest
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Figure 3.6: Remaining candidate solutions per query in a single trial of Dual Execution (Affine
Predicates)

parties’ orders. Although only partial knowledge is attained, the security model of

the MPC [Bog+09] treats the entire prices/amounts list as confidential, and so this

attack still represents a meaningful compromise of the intended privacy. Additional

parameters and configurations of malicious and honest parties are explored in §3.7.

3.6.1.4 BWWC

We evaluate three functionalities derived from the Boston Women’s Workforce Council

MPC [Lap+16]: Bucketed Average, Wage Equity (with two variants), and Mean Average.

Bucketed Average. In the Bucketed Average functionality, McFIL is only able to

uncover the target to the granularity of the buckets (ranges). By definition of the
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functionality, averages which land in the same buckets are indistinguishable, and so

this result is expected. Figure 3.7b in §3.7 demonstrates the progress of the iterative

attack, noting that it completes before finding a unique solution for target.

Due to the significant number of outcome classes, the SelectOutcomes subroutine

dominates execution time. Specifically, the CNF generation step prior to parallelization

incurs the most overhead. We discuss the overhead of CNF generation in §3.8. Once

CNFs have been exported, parallelized ApproxMC may be employed, and due to the

significant number of independent ApproxMC tasks the speedup in this case achieves

up to 10× at some iterations.

Wage Equity. In both the circuit division and standard division variants of the

functionality, the wage-average computation leaks significant information of the high-

order bits of the honest party’s input salary. Although the salary is not uncovered in

full, learning the most significant upper half of this value effectively defines the salary

range – disclosing information intended to be private.

In the circuit division instance, the mean calculation is reorganized to use a multi-

plication inside the solver rather than an unsigned integer division. Integer division

corresponds with a complex Boolean formula after translation through Z3’s SMT in-

terface into SAT due to the edge-case handling of division. By applying some basic

mathematical insight to adapt the target functionality to be more amenable to SAT,

we achieve a notable increase in performance.

The performance gain is evident compared to standard division. As noted in Ta-

ble 3.3, the overall computation time at a given bit width differs by an order of mag-

nitude. However, as indicated by the similarity of Figure 3.7c and Figure 3.7d in

§3.7, the resulting attacks achieve similar per-query efficiency in eliminating candidate

solutions.
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Both functionalities encode predicates with two simultaneously satisfiable outcomes.

As a result, the SelectOutcomes heuristic is unneeded, and as a result is pure overhead

lost in exchange for the assurance that the attack will proceed even if the outcomes are

or become mutually incompatible. However, parallelism minimizes the impact of this

overhead attaining a 1.5−2× speedup across the two outcomes.

Mean Average. In the Mean Average functionality, the output range of the function-

ality is the full domain of its inputs. This functionality takes two inputs and computes

their mean. As the inputs are bitvectors rather than purely mathematical integers or

reals, some complexity is introduced to this averaging through floored division and the

2n−1 bound of an n-bit value. As a result, McFIL finds attacks which generally require

two queries, occasionally three.

Although this relatively simple functionality admits a query-efficient attack, it

is a useful benchmark due to the maximal number of possible outputs. The full-

domain output (of exponential size in n) taxes SelectOutcomes to the maximum degree

per target bit. As a result, the bottleneck of McFIL is the SelectOutcomes heuristic,

specifically in CNF generation for each SAT instance. CNF generation via the Tseitin

transformation [Tse68] occurs within the Z3 SMT solver and, while asymptotically

efficient, can require significant computation time. Unfortunately, as CNF generation

vastly exceeds ApproxMC solving time within SelectOutcomes, process-parallelism

offers little benefit and even occurs slight overhead in some tests.

Mean Average-like functionalities are the key motivator for the SelectOutcomes

heuristic. With a Delphinium-like approach, the attack immediately fails with an

UNSAT result. The reason for this failure becomes clear by example.

Consider a 2-bit adversary input a, and 2-bit honest input b. mean(a,b) ∈ {0,1,2,3}.

Configuring simultaneous maximization to find an optimal a, the following constraint
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(among others) is added to the solver. The symbolic representations of the four partitions

of b denoted {b0,b1,b2,b3} correspond to b when the mean with a is 0, 1, 2, and 3,

respectively.

mean(a,b0)= 0 ∧ mean(a,b1)= 1 ∧

mean(a,b2)= 2 ∧ mean(a,b3)= 3

Notice that the first clause of the conjunction requires (a,b0) to be (0,0), (0,1), or (1,0)

(with floored division). Therefore a ∈ {0,1}. However, the last clause requires (a,b3)=
(3,3) exclusively. As {0,1}∩ {3} = ∅, the conjunction is unsatisfiable. SelectOutcomes

correctly identifies that b1 and b2 are not similarly mutually exclusive, and that they

contain the largest number of candidate solutions for b. As a result, b0 and b3 are

selected out, and the attack proceeds without interruption. McFIL is then able to

derive an optimal or near-optimal attack in 2 – 3 queries.

3.7 Additional Evaluation

Each graph within Figure 3.7 below denotes a representative example attack generated

by McFIL. Each test operates over a domain of 28- to 36-bit values in order to keep

overall benchmarking time reasonable with many repetitions of each attack. Some

attacks do not trend to 20 as the functionality does not admit complete leakage of the

underlying secret (honest) input(s).

Testing Environment. All tests were performed on an Intel Xeon E5 CPU at 2.10GHz

with 500GB RAM. Process-level parallelism was configured to employ 64 of the avail-

able virtual threads of execution using a Python3 process pool [Pyt22]. We used

CryptoMiniSat 5.8.0, ApproxMC 4.0.1, Z3 4.8.15, and Python3 3.8.10.
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(a) Danish Sugar Beets Auction (228) (b) BWWC Bucketed Mean (232)

(c) BWWC Wage (circuit division) (236) (d) BWWC Wage (standard division) (236)

Figure 3.7: Remaining candidate solutions (log scale) per query

Many-Party MPC in the Sugar Beets Auction. The Sugar Beets Auction function-

ality demonstrates McFIL in the setting where more than two MPC participants are

involved. In effect, McFIL treats multi-party protocols as 2PC: the solver is simply

aware of bits that are symbolic and out of its control, and bits that it is able to vary

to induce satisfiability. However, as it is an illustrative example, we demonstrate the

varying results of McFIL as the number of honest and colluding malicious parties

varies. Often, the uncovered target bits does not completely cover the domain, but in

these cases McFIL generally uncovers one or more high bits of each Honest party’s
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Table 3.4: Additional Sugar Beets Auction Evaluation

target Domain Queries Time Speedup
4 Players, Sellers Malicious 14 – 18 228 11 – 15 ≈ 5m 4−5×
4 P., Buyers Malicious 8 – 18 228 8 – 15 ≈ 5m 4−5×
4 P., One Each Mal. 12 – 12 228 11 – 18 ≈ 5m 4−5×
4 P., One Buyer Mal. 0 242 6 – 10 ≈ 3m 4−5×
4 P., Three Buyers Mal. 14 214 8 – 9 ≈ 1m 2×
6 P., 2 Mal. 1 Hon. Each 10 – 14 228 11 – 12 ≈ 5m 2−4×
6 P., 1 Mal. 2 Hon. Each 8 – 20 256 12 – 20 ≈ 25m 1−7×

target bits discovered (maximum log2(domain))
Average time given for full attack, not per-query.

Minimum and maximum queries listed.
‘Speedup’ denotes approximate wall clock time savings through parallelization.

input, restricting their possible values to smaller ranges within the domain.

3.7.1 Contributed Benchmarks

At each iteration of McFIL execution, the solver contains a representation of all input

knowledge. This includes the functionality and basic constraints which define the prob-

lem. In addition, it contains all iteratively added constraints which narrow the target

search space. As a result, the McFIL procedure generates numerous SAT instances

consisting of constraints directly relevant to the iterative discovery of leakage. This

represents a relatively novel domain of usage for SAT.

In order to promote the development of SAT solvers and other tools, the SAT research

community aggregates and shares “benchmark” SAT instances (generally stored as

CNF or SMT2 text file formats). The SMT-LIB benchmark suite [BFT16] accepts

submissions of contributed SAT instances in these text-based formats. The newest

benchmarks in SMT-LIB inform the development of solvers, and provide an opportunity

for SAT research to hone its tools on problems of practical interest. Historically this
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has aided solver development and improved performance on instances in the same

class of functionalities over time.

As an additional artifact, we have submitted a wide assortment of benchmarks to

the SMT-LIB compendium of SAT benchmarks [BFT16]. These have been accepted to

help aid solver development and increase performance on the particular instance types

McFIL encounters. Advancements in SAT research can offer a drop-in improvement

to this work by expanding the horizon of computational feasibility. A summary of the

submitted files is presented in §3.7.1. A subset of these benchmarks have already begun

to see use within SAT research as a basis to test a new model counting approach [Sha].

Finally, in the course of generating, gathering, and testing numerous randomized

SAT instances, a variety of underlying software bugs in the CryptoMinisat [SNC09]

and Z3 [MB08] solvers were uncovered, reported to open-source software maintainers,

and resolved collaboratively.

Table 3.5: CNF Benchmarks Overview

# Clauses Avg. Cls. Variables Avg. Var.

Mil. 1,504 1,158 – 62,676 17,116 506 – 17,039 4,524

Dual Exec. 729 4,898 – 49,160 8,562 1,549 – 12,375 2,290

Sugar Beets 88 49,020 – 159,349 112,178 10,451 – 27,640 19,834

B. Mean 345 29,794 – 66,138 46,238 8,824 – 17,036 12,593

Wage 210 21,898 – 94,822 75,813 4,987 – 12,208 9,072

Wage (c.d.) 194 6,058 – 11,053 7,655 1,283 – 2,465 1,571

Mean Avg. 28 1,646 – 76,440 49,966 503 – 19,682 13,408

Total 3,098
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3.8 Discussion

We conclude this chapter with retrospective analysis of McFIL’s practicality in our

intended use cases, limitations, and then looking forward to additional open problems

uncovered throughout this work.

3.8.1 Practicality

Our results demonstrate that McFIL is capable of evaluating a diverse array of simple

functionalities in a matter of minutes of computation time. The generated attacks,

which rely on the aforementioned multi-run adaptive assumption, are able to uncover

all bits of the private target value in many cases. When our approach cannot continue

to differentiate classes of candidate solutions to eliminate, it notifies the user that the

attack may devolve to “brute-force” and asks if they’d like to continue. This occurs

when SelectOutcomes fails to find a simultaneously satisfiable set of outcomes.

We observe that predicate functionalities execute relatively quickly, and function-

alities with larger outputs (e.g. the Danish sugar beets auction and bucketed mean

functionalities) spend significant time in SelectOutcomes. On the extreme end, the

mean average functionality has an output domain as large as the output bitvector

allows – and we correspondingly observe the most time spent in navigating these highly

mutually-exclusive outcome classes.

In multiple cases, the SelectOutcomes heuristic is the computational bottleneck for

attack progression. Analyzing these cases more closely reveals that the CNF generation

step, using Tseitin’s method [Tse68] to generate a CNF from an arbitrary Boolean

formula with only linear expansion, is the crux of the subroutine. Despite its asymptotic

efficiency, this step (as executed within Z3) takes significant time. We employ a number

of CNF manipulation and caching techniques to avoid unnecessary regeneration of
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CNFs where possible, however, the relative speed of parallelized ApproxMC leaves this

sequentially-executed step as the longest-running component.

Even without the multi-run adaptive assumption to allow an iterative attack, the

initial analysis step quantifies approximately how much leakage can be exploited with

a given optimized query. On its own, this enables privacy/confidentiality analysis of

any functionality planned for inclusion into an MPC, FHE, or ZK scheme. Further, this

analysis needs to be run only once for a given functionality, and so even if hours or days

of computation are required for some complex functionality, the resulting quantified

leakage or iterative attack can provide pivotal insights to researchers and developers.

Limitations. The remaining practical limitations of McFIL are largely entangled with

the inherent complexity of the computational problems it employs. For sufficiently

complex functionalities or large output domains, running time increases significantly.

Depending on the use-case, this may not rule out the use of McFIL for importan-

t/sensitive functionalities or contexts. Notably, for functionalities with very large

output domains, or which encode cryptographic primitives (e.g. the AES round func-

tion [AKMY10]) directly within their Boolean circuitry, McFIL reaches wall-clock

performance bottlenecks which may impede its applicability.

McFIL seeks to reduce operator burden and required expertise to develop confiden-

tiality attacks or measure leakage. However, a certain degree of operator involvement

is still required: McFIL can only be as accurate as the Boolean formula representation

of a target functionality. The Python3 DSL we provide is an initial step in this direction,

however it still requires understanding and manual effort.

3.8.2 Open Problems

SAT and cryptography have intersected numerous times in the research literature,
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often to their mutual benefit. McFIL pursues this interdisciplinary exchange by ap-

plying emerging SAT techniques to a new domain, bridging theory and practice, and

contributing back to the SAT community. With McFIL, developers of secure protocols

can automatically determine privacy thresholds or generate attacks against candidate

systems. Potential users of these tools can evaluate them before choosing to use them.

For sufficiently sensitive use cases, extensive computation times for complex or large

functionalities may be worthwhile; McFIL empowers practitioners to make that de-

cision without requiring expensive expert analysis. In addition to the opportunities

to address limitations of this work, our approach offers a few promising avenues for

future work.

Differential Privacy Thresholds. A differentially-private (DP) database protects

individual data records (e.g. of people) while enabling aggregate queries. DP is

generally parameterized by a number of allowable queries before privacy loss can be

expected. Exchanges with a DP database can be viewed as a 2PC between the querying

party and the database operator. The functionality executed is the aggregation function,

and the privacy of individual records must be maintained. McFIL may be applied

directly to verify the query threshold of DP systems. As an extension, McFIL could

also be reconfigured with the intended threshold fixed to a concrete number of queries,

and then used to solve for the privacy budget value. This would automate the process

of choosing DP parameters, removing the need for expert intervention.

Evaluating Side Channels. Side channels appear as open problems in our discussion

of Delphinium in Chapter 2, and remain open even given the contributions of this work.

However, this chapter contributes a significant step forward in resolving this open

problem by transitioning analysis capabilities from simple 1-bit predicate functions to

functions with arbitrary finite output sizes. While a Delphinium-based approach would

136



CHAPTER 3. MCFIL

require the user to “bucket” function outputs to 0 or 1 in order to analyze, thus deciding

the threshold as a parameter, a McFIL-based approach would allow a simple direct

encoding of side channel measurements to bitvectors of a sufficient length, enabling

the algorithm to derive any relevant thresholds dynamically and automatically. In our

evaluations of McFIL we compare with the approaches of numerous works relating to

side-channel leakage. Future work could entail reproducing or improving the results

of those works using our approaches and then directly comparing an McFIL-powered

analysis to further evaluate our approach and further elucidate the domain of leakage

estimation.
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SocIoTy

This chapter is based on joint work with a number of contributing authors, originally

published in the Privacy Enhancing Technologies Symposium 2024 [Joi+24].

Computing, ultimately, is a tool built by and for humanity. Equally as important as the

types of defenses and attack, automation and estimation, or theoretical underpinnings

thereof, is the translation of these concepts into their practical realization. In the

modern era, the primary, most used, and most accessible manifestation of computing

is the smartphone [Tos+12]. Therefore, in this chapter we naturally progress from

automating attacks to developing usable defenses in the form of a secure protocol

designed for home and smartphone use. This protocol and the accompanying analysis

and evaluation of its usability and privacy constitute the primary contributions of the

chapter. This work, resilient to the attacks we present in prior chapters, bridges theory

and practice in its design and implementation.

In addition to being computing platforms that are deeply embedded in our daily

lies, smartphones are important sources of trust, providing users secure access to

their data everywhere they go. While this mobility is convenient, it also represents

risk. If a user’s smartphone is stolen or seized, an adversary can uncover or even

impersonate the user in their digital life: accessing the user’s data and services or
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decrypting their sensitive files. With this in mind, we design SocIoTy, which uses IoT

devices in collaboration with a smartphone to provide a high-security trusted computing

base for non-expert users. We first discuss the notion of at-home cryptography, which

binds cryptographic operations to a user’s physical presence in their home (or another

pre-determined location). We then provide our instantiation of at-home cryptography

by federating trust across the IoT devices that users already own. We implement

and evaluate SocIoTy for practical, real-world use cases such as authentication and

encryption. SocIoTy is able to provide strong cryptography while binding its execution

to the IoT-capable home (“smart home”) itself.

Mobile devices have quickly become the most important trusted computing base for

most users. Users rely on mobile devices to authenticate and interact with services that

perform sensitive tasks, e.g., online banking, file storage, and telehealth. These tasks

are often secured using a combination of passwords and locally-stored cryptographic

secrets, e.g., one-time passwords (OTPs) generated by a smartphone app.

The convenience afforded by mobile computing is accompanied by a commensurate

increase in risk. Mobile devices are easily lost; for example, if a user loses their mobile

device used for two-factor authentication (2FA), they may be unable to access their

bank account or their medical records. While account recovery may be possible, account

recovery mechanisms are notoriously insecure and often exploited by attackers [AK12].

Worse still, if a mobile device is taken, the cryptographic material used to au-

thenticate the user could be extracted [ZJG22]. This would allow the adversary to

impersonate the user and access their services—a catastrophic breakdown in online

security and privacy. A corporate spy, for instance, could use extracted 2FA OTPs to

connect to a rival company’s internal VPN. This threat is particularly dire when the

user needs to keep their data private from law enforcement agencies with access to
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software that can be used to circumvent on-device security measures. For example,

border police could decrypt files from a user’s cloud storage, inspecting it for content

deemed anti-government.

Mitigating risk with at-home cryptography. To mitigate the risk posed by device

loss, users should be able to voluntarily restrict access to critical key material to times

when their device is in some trustworthy location, e.g., the home. These users can

opt-in to restricting their usage, possibly because they may consider certain actions too

sensitive to operate outside of a secure location or might consider themselves particu-

larly at-risk. Users might already limit their use of online banking or telemedicine to

times when they are at home for privacy reasons, for example.

For these applications, it would suffice to authenticate using cryptographic opera-

tions that could only be performed at home, a class of cryptographic operations we refer

to as at-home cryptography. However, mobile devices offer no fine-grained access control

mechanisms based on location that could facilitate at-home cryptography; even if the

user only uses the material to authenticate themselves while at home, that material is

still exposed regardless of location.

At first glance, achieving limited access to authentication material might appear

trivial: a user can simply store authentication material on a device that stays at home

rather than on their mobile device, e.g., a desktop computer or a dedicated hardware

security module. Because this device is stationary and only accessible on a local

network—or even air-gapped for additional security—access to the authentication

material is inherently limited.

While straightforward, this solution requires two inconvenient preconditions. First,

the user to own such stationary hardware (with a reasonable expectation that it

will never be moved from the home), and second, the user must have the technical
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expertise to manage this hardware and any needed security configurations. In the time

before widespread smartphone use, this solution made sense; personal computers were

not very portable, and required at least some level of technical expertise to operate.

However, this ostensibly simple solution is becoming unworkable for a rising part of

the general population. 15% of adults in the United States only use smartphones as

their primary device, with an upward trend since 2013; in the youngest generation of

adults, 18-29 years old, this proportion increases to 28% [Pew21].

At-home cryptography for everyone. In this work we study the feasibility of

realizing practical, accessible at-home cryptography that can be widely used while

remaining secure.

At-home cryptography is a special case of location-based cryptography, which has

been studied in both the theoretical [Cha+09; Bro+17; Buh+11; Phu+19; PQ10; Kas+12]

and applied [SD03; Qiu+07; FV12; AFAI07] literature. However, no practical construc-

tions have been contributed in these works. Further, there are impossibility results

that might rule out some “ideal” solutions [Cha+09]. As such, we attempt a pragmatic

approach, and make the following observations.

First, we observe that to achieve at-home cryptography, users can leverage existing

hardware. Although users are unlikely to have access to dedicated secure hardware

for at-home cryptography, they may have access to Internet-of-Things (IoT) devices.

These single-purpose, generally inexpensive devices typically do not leave the home,

making them an attractive prospect for anchoring a trusted computing base for at-home

cryptography. Second, we note the possibility to use this existing hardware to federate

trust. Because IoT devices have an extensive history of vulnerabilities [SRB20; DV17],

it is not advisable to use any single device as a trusted store of secrets (cryptographic or

otherwise). The concept of Defense in Depth [Mug18] provides a guide: it is by definition
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always at least as difficult to exploit a set of multiple systems as it is to exploit any

single system in that set. Thus, we observe that if we are to rely on IoT devices, it is

more appropriate to distribute trust among many IoT devices, such that an attacker

would need to compromise multiple devices before exposing any of the user’s secret

data.

Employing these observations to develop a practical system requires carefully nav-

igating tradeoffs between security, usability, and efficiency. Because of the single-

purpose nature of IoT devices, they generally have much lower computing capacity

compared personal computers or even to smartphones. This in turn limits the complex-

ity and flexibility of viable approaches to federating trust.

4.1 SocIoTy

In this work we provide a system design and related protocol for at-home cryptography

using a user’s existing IoT devices. We term this contribution SocIoTy. Our system

is designed for non-expert users who wish to protect high-value digital resources but

do not have the resources, expertise, or inclination to use dedicated secure hardware.

Our system allows these users to set their own risk tolerances, allowing them to bind

whatever data they consider to be most valuable to their smart home. While we focus

on the smart home in this work, SocIoTy has applications wherever there are multiple

embedded devices running on the same network, such as small businesses and hospitals.

We provide a summary visualization of our design in Figure 4.1.

SocIoTy achieves at-home cryptography by performing secure multi-party computa-

tion (MPC) [Yao86b; GMW87; BGW88; CCD88] using IoT devices which hold secret

shares of cryptographic data such as encryption keys or authentication secrets. The

142



CHAPTER 4. SOCIOTY
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Figure 4.1: System architecture of SocIoTy. An authorized device interacts with the smart
home to perform at-home cryptographic operations for interaction with remote services.

user, through their smartphone, initiates an at-home cryptography request by commu-

nicating with the IoT devices, which use short-range protocols such as Wi-Fi, Bluetooth,

or Zigbee [AS+17]. The devices then collaboratively perform MPC to compute the

output of the requested operation, returning it to the user via the smartphone. For

example, in the encryption case, the operation can return a decryption key to the user,

which they must simply securely erase after using; secure erasure is a standard feature

on modern smartphones [ZJG22]. In the authentication case, the smart home can for

example generate a one-time passcode, allowing the user can authenticate to a remote

service once. The capability of MPC to support arbitrary functionality ensures that

the range of available operations is limited only by the computing capability of the IoT

devices, and the security of the MPC protects sensitive data from network interception

or even a subset of compromised participant devices. The limited transmission power
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of IoT devices ensures the operation can only be performed within (or perhaps very

near to) the smart home.

IoT devices are resource-constrained and will generally serve some primary purpose

in the home beyond SocIoTy. Thus, they may need to stop participating in the MPC

abruptly to handle user requests and events. In the naïve case, the devices would

then have to restart computation with a different set of participants, dramatically

increasing system latency. So, we must design an MPC protocol that does not strictly

abort when parties spontaneously go offline. To that end, we employ a fluid MPC

protocol. Fluidity, a recently formalized MPC property [Cho+21], measures an MPC

protocol’s tolerance to churn among participants. It was initially envisioned to facilitate

long-running MPC evaluations of complex functionalities with large, dynamic groups.

While SocIoTy considers relatively small cryptographic circuits, fluidity nonetheless

provides resilience and relative efficiency in the event of dropouts.

Our implementation of SocIoTy supports symmetric authentication and encryption

that is interoperable with various real-world schemes. Together, these can power many

practical needs, such as the generation of two-factor authentication (2FA) one-time

passcodes (OTPs), and allowing users to store and retrieve sensitive, encrypted content—

all without worrying that they will risk compromise of their credentials outside the

home. Moreover, service providers (i.e.the targets of an authentication operation) would

not have to change their systems to accommodate SocIoTy; users simply change how

they store their own secrets. Our system is also sufficient to construct self-revocable

encryption [Tya+18], allowing users to temporarily delete key material that could

decrypt sensitive data, for example stored in the cloud, and allow key recovery after the

user has safely returned home. We find that our implementation meets the performance

needs of our intended applications—performing OTP generation or key encryption, on

average, in less than 3 seconds.
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Contributions. In this chapter, we discuss the problem of giving non-expert users

location-based access control to cryptographic material, focusing on the at-home cryp-

tography setting. Our goal is to help average users mitigate the risk associated with

carrying high-value cryptographic secrets or on their smartphones, giving users the

peace-of-mind in knowing that their configured services or data can only be accessed

from home. Specifically, we discuss at-home cryptography, and show how it can be used

to build relevant constructions such as time-based one-time passcodes [M’R+11] and

self-revocable encryption [Tya+18] that are restricted to the smart home. We then

present SocIoTy, covering its system design, implementation, and evaluation. Further,

we develop a domain-specific language for writing MPC circuits, and a fully-realized

implementation of a generic MPC system in Rust with support for churn, as well as

additional extensions to support SocIoTy.

4.2 Background

Smart home. SocIoTy relies on a network of Internet-of-Things devices within the

home to bootstrap at-home cryptography. IoT devices and smart home networks are

proliferating rapidly [Mor22]. In 2022, 57.5 million Americans lived in a smart home,

accounting for 45% of United States households, and it is estimated that by 2026 more

than 25% of homes worldwide will have some degree of IoT capabilities [Sta22]. IoT

devices range in computational hardware from extremely lightweight micro-controllers

to fully-Linux-capable systems with gigabytes of RAM. We rely on IoT devices to

perform cryptographic operations and to communicate over the network to realize

SocIoTy within an otherwise independent set of devices. As in prior work [Kum+19] we

assume a network of constrained but somewhat capable devices (in terms of computation

and power) rather than the bare minimums of computational capacity. In our evaluation
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(§4.5) we model these devices with Raspberry Pis, lightweight and inexpensive but

Linux-capable devices, to explore feasibility.

Location-based cryptography. Location-based cryptography was introduced for-

mally by Chandran et al. in 2009 [Cha+09] as “position-based cryptography,” wherein

they demonstrate the impossibility of verifying the physical position (based on radio

wave communications) of a number of colluding provers within a space. However, the

authors also develop collusion-secure position verification by adopting a further as-

sumption: in the bounded-retrieval model, provers are only capable of extracting partial

data from high-entropy messages transmitted through the space. Using this tool, the

authors demonstrate collusion-resilient location verification, and further develop a

key exchange mechanism with location as its basis. Works since have explored the

assumptions made by Chandran and their implications in complexity theory [Bro+17]

and in the quantum setting [Buh+11]. Location-based cryptography has also arisen in

rudimentary forms in industry and personal device use. Examples include hardware

tokens which are kept physically secure (e.g. within a home or bank deposit box) or

hardware security modules deployed to remote corporate offices – therefore requiring

participation from that geographic location to authenticate an action.

Two-factor authentication (2FA). To increase security for end-users, online service

providers have increasingly begun to deploy 2FA, which requires a second form of

authentication to login to a service. The most common form of 2FA, after email and

SMS [Che21], is the time-based one-time password (TOTP) [M’R+11]. Every x seconds

(recommended default x = 30), a user’s token (e.g., a smartphone app) generates an OTP.

When the user wishes to authenticate, they input their username, password, and the

current TOTP code. Unlike passwords, TOTPs are short lived; they are only valid for the

time interval x in which they are generated, and can only be used once. Users therefore
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authenticate with a combination of something they know (a password), something they

are (a fingerprint or retina scan), and something they have (their token, which generates

OTPs). TOTP is supported by major social media platforms [Wat21], electronic health

records systems [Duo21], financial institutions [Rob], and corporations [Cis20].

The security of TOTP relies on the underlying HMAC-based OTP algorithm [M’R+05]

(HOTP), which generates OTPs using the HMAC construction [KBC97]. The security

of HOTP, in turn, relies on the assumption that HMAC is a pseudorandom function

(PRF) [GGM86]. A PRF is a function with outputs that cannot be distinguished from

a random function without some secret key sk. Since adversaries without sk cannot

predict PRF outputs, PRFs are useful for generating OTPs. Thus, as long as we assume

that our underlying primitive (HMAC) is a PRF, then the OTPs generated by HOTP

(and thus TOTP) are secure. More formally, a TOTP is parameterized by x (seconds)

and defined by TOTPx(sk, ts) = PRF(sk,⌊ ts
x ⌋) mod 106, where ts is a timestamp and

mod is the modulus operation (used to convert the output of PRFinto a 6-digit integer).

We omit x in our notation for TOTP for simplicity.

Compelled access. Compelled access to a software system or to data, whether by

a malicious attacker or law enforcement agent, poses a serious risk to privacy and

security. Compelled access can be viewed as exploiting a user’s ability to authenticate,

and similarly, compelled decryption can be viewed as exploiting a user’s ability to

decrypt sensitive data. Recent work has explored the mechanisms and mitigations

of compelled access and decryption in mobile devices [ZJG22], as well as defending

cryptographic protocols from compelled decryption by identifying and reducing long-

lived secret values [SV21]. BurnBox [Tya+18] attempts to address compelled decryption

by putting a users ability to decrypt in escrow in a secure location—specifically by

allowing secure deletion which is recoverable only with a secret key saved elsewhere,
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e.g., in a vault at home.

Location-based cryptography is a powerful mechanism when considering compelled

access and decryption. Broadly, location-based cryptography ties cryptographic op-

erations to some notion of location [Cha+09; SD03; Phu+19]. If cryptography is only

possible within a secure location (e.g., the home), and compelled access or decryption

can be expected to occur elsewhere (e.g., at a border crossing or the proverbial dark

alley), these risks are mitigated. Better yet, the user cannot be directly coerced (i.e.,

via “rubber-hose” cryptanalysis) to release a key which is only accessible from a given

remote location.

Secure multi-party computation (MPC). As described in Chapter 3, MPC, which

was first described in early works of modern cryptography [Yao86b; GMW87; BGW88;

CCD88] and has since been extensively explored and developed, allows a set of parties

to compute a function of their inputs while keeping those inputs confidential. A generic

MPC protocol Π can securely compute some arbitrary function f , described as either

a Boolean or arithmetic circuit. However, the security and properties provided by Π

may differ widely. Some protocols may provide security against either a majority or

minority of adversary-controlled parties, or against an eavesdropping or fully-malicious

adversary. They may also provide other properties, like guaranteeing protocol output

even when parties deviate from the protocol (termed guaranteed output delivery).

Recent work has studied the setting of dynamic participation, in which the parties

that participate in the protocol may change over time. In this work, we follow prior

work [Cho+21] where f is expected to be a long-running computation—such as training

a machine learning algorithm—where it may be unrealistic to expect parties to par-

ticipate for the duration of the whole protocol. We adapt the BGW protocol [BGW88;
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✅ X

XUser can access 
services from 
secure location

Compelled decryption of 
device does not allow access 
to services

Remote adversary 
cannot break 
location-binding

Figure 4.2: Overview of the SocIoTy threat model.

GRR98] to this setting and show that malicious security may also be achieved by us-

ing a variant of the malicious compiler of [Chi+18]. Other works have followed the

idea of dynamic participation models in MPC with various trade-offs between net-

work performance, computational complexity, and resilience [RS21; Gen+21; KRY22;

Cas+22].

4.3 Threat Model

In this work, we consider a threat model which relates directly to most end-users of

home IoT devices. In our setting, we consider a physically secure home location to which

the user has consistent access. This serves as a trusted location where decryption

or other sensitive actions may be allowed to occur. Further, our model requires two

classes of devices to be present. First, the user has a single authorized device (e.g., a

smartphone or laptop) which moves with them and is not always home. This device

may be lost, stolen, or seized; in any of these cases we assume that all of the devices

secrets can be extracted (either through circumventing on-device protections or through
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compelled decryption) [ZJG22]. We otherwise assume the device to be secure and the

software it runs to be trusted.

Second, our system leverages a number (say, N) of IoT devices provisioned within

the home, which communicate over a shared, wired or short-distance wireless (e.g.,

Wi-Fi) network. We focus in particular on devices that are difficult to remove from the

home, such as large smart appliances, lights, hubs, and security cameras. Of these N

devices, n ≤ N of them will be participating in the at-home cryptography protocol at any

point in time. We assume that some threshold t of the devices that are participating in

the protocol can be compromised, allowing the adversary total and arbitrary control

over them. In our implementation we will make an honest-majority assumption, i.e., if

n of the N total devices are participating in the protocol at any given time, security

is maintained when 2t < n. We argue that, for small numbers of devices within the

home, it is reasonable to assume that up to only one or two can expected to be actively

compromised at any given time. The user may be unaware that a compromise has

occurred, and the adversary is assumed to be able to use the compromised devices

to interact with the rest of the network any way they choose. That is, we essentially

assume a fully privileged remote-code-execution exploit.

Security goals. An overview of our threat model can be found in 4.2. Our work

addresses adversaries who wish to break the location-binding property. That is, the

constraint that only users possessing both the authorized device and who are physically

at home can successfully execute the protocol. The smart home devices provide federated

trust and an effective “proof of location” that our system will leverage, and thus are the

natural target of the presumed adversary’s attacks. For example, an adversary could

use a compromised IoT device to attempt to masquerade as the authorized device, or

otherwise corrupt the protocol to perform sensitive actions without the user present at
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home.

While all adversaries we consider have the ability to compromise t devices (i.e., a

minority fraction of the network), we also consider adversaries with two additional

capabilities. First, we consider adversaries that can physically access the home and

may try to interact with the at-home cryptography system, e.g., a malicious house

guest. These adversaries can eavesdrop on the local network and send messages to

the IoT devices. They can also interact with the user’s authorized device, but cannot

compromise it.

Second, we consider adversaries that can obtain access to the authorized device when

it is not physically present in the home. These adversaries can extract all of the secrets

from the authorized device and use this in conjunction with any IoT devices in the home

they may have compromised. For example, consider a border control officer that compels

decryption of the user’s authorized device while the user is crossing the border. They

may also have been able to compromise some of the user’s IoT devices remotely, but are

assumed to not be near the home location. We note that this threat model exceeds that

of many secure protocols, which assume a malicious network but an unquestionably

trusted, secure end-user device. Some works have considered this aspect of our threat

model such as analyzing security against compelled decryption [SV21].

We assume that all of the user’s devices (authorized and IoT) have access to point-

point secure channels for communication. We can achieve this through the use of

transport-layer security (TLS) with client-side authentication [Res18] (also referred

to as TLS mutual authentication. In practice, all communications between devices

will generally be restricted to the wired or wireless LAN. To achieve this, there needs

to be an initialization phase where the user is able to securely provision all of the

devices in the system—a normal step in most home IoT configurations. Part of this
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initialization will establish the necessary secrets for secure point-to-point channels

between the devices. While this can be seen as a strong assumption, we observe that

the user controls all of the devices involved, and the entire protocol execution occurs

within the home.

Execution of our protocol begins by having the authorized device initiate. This

initiation can only be triggered by the authorized device while it is at home (as otherwise

it simply cannot communicate with the IoT network). The authorized device will be

provisioned with the necessary credentials to carry this out during the initialization.

The IoT devices will start execution upon receiving the initialization message from the

authorized device. It is important to note that compromised IoT devices will be able to

“listen in” to the computation and participate, but do not have the credentials needed

to initiate the protocol. We discuss this in more detail later in this section.

Thus, we can summarize the security properties of SocIoTy as follows. Given:

(1) an initial provisioning phase to establish point-to-point channels,

(2) an adversary that can compromise no more than t IoT devices on the network, and

(3) an authorized device that may be lost or stolen, but will not be compromised while

at home,

SocIoTy guarantees that there is no computationally-bounded adversary that can break

the location-binding property.

Network exposure and device cloning. The majority of IoT devices communicate

with the external Internet, generally the manufacturers cloud servers. This represents

additional attack surface, as an adversary could attempt to break location-binding by

compromising the authorized device outside of the home, compromising a single IoT

device in the smart home, and forwarding authorized commands from the device to the

other IoT devices. To mitigate against this, we establish a “wake on LAN” configuration
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wherein a non-Internet-connected device receives authorization from the smartphone

over a low-range physical layer, which then activates the devices actually involved in

the computation. Many common IoT devices communicate only via low-range radio

(e.g., NFC [ECM13; Nor]), obviating the need for additional hardware in this step.

To limit the need to perform this low-range activation process, we can utilize a

short range key recovery procedure. First during initialization, each IoT device gets a

share of the authorized device’s authentication credentials (this is natively supported

by the at-home cryptography system). Then, prior to compelled decryption of the

authorized device, the credentials can be deleted from the device (this is equivalent to

the BurnBox [Tya+18] setting). Once the user returns home, they use the NFC-based

“wake on LAN” procedure to reconstruct the authorized devices credentials. Following

this key recovery, the at-home cryptography system will work as normal again.

We note that while this “wake on LAN” assumption may seem to introduce an

effectively “air-gapped” device into our system, we observe some key differences which

remain. Particularly, we still do not require specialized hardware outside what would

commonly be found in a IoT-enabled household. Trust is still distributed, and no

single device has access to the user’s secret data. The flexibility of our system is also

maintained, as the user only needs to make use of this process if they are concerned of

a significant compromise of their state.

Security non-goals. The user (owner of the smart home) is considered to be honest.

While a malicious user could break the location-binding property of our system, we

consider this to be out of scope. The main focus of this system is preventing access

by unauthorized individuals. We also assume that any remote service involved in an

at-home authentication protocol is honest. Our primary concern lies with adversaries

that can compromise the user’s IoT devices or authorized device. Additionally, we allow
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the adversary to abort protocol execution, as this does not impact location-binding.

Finally, we do not consider the threat of an adversary that is able to compromise the

user’s authorized device and also gain physical access to the home. Our protocol cannot

defend against this as-is, because this represents total compromise of all of the user’s

protocol state.

4.4 At-Home Cryptography

To formally capture the notion that some cryptographic operations should only be avail-

able at home, it is necessary to “modify the interface” of notional cryptography function

invocations (decrypt, generate OTP, etc.) with an additional input representing location.

This modification clearly captures generic location-based cryptography, a superset of

at-home cryptography. As we are only interested in the particular subset with location

either in the home or outside of it. Thus, we modify a notional cryptographic function

F with input z to produce the function Fhome as follows:

Fhome(z, loc)=
{︃

F(z) if loc=home
⊥ otherwise

We emphasize that this notation is informal; by making the location an input to

the function, an adversarial caller could call the function with a location other than

their own. Formally modeling this transformation would require limiting the caller

to use their true location, perhaps by letting users to make queries to a subset of

functionalities, where the subset was determined by their present location. Indeed,

this better matches our envisioned system, in which these oracles are realized by

distributed computation on hardware segmented to only a local network. In either

sense, providing a formal framework for at-home cryptography is beyond the scope of

this work; we will use the informal notation described above, as the intuitive meaning
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is clear.

4.4.1 At-Home Cryptographic Applications

At the heart of any at-home cryptography application is an existing service that users

want to restrict to a private environment in which they feel secure. By limiting access to

these services to their home, users trade flexibility or convenience for additional security

and privacy. However, we observe that there are many applications for which the loss

in flexibility might be inconsequential or beneficial. Limiting the environment in which

they can access a service might be an issue of comfort for some users, e.g., accessing

telemedicine services or banking services without worrying about shoulder surfers.

For these users, the loss in flexibility might only marginally impact their lives, while

the peace-of-mind offered by at-home cryptography might be significant. Other users

might be interested in leveraging at-home cryptography to enforce cybersecurity best-

practices, e.g., a doctor’s office or law practice allowing remote work but still controlling

the locations from which employees can access the corporate VPN or decrypt highly

sensitive documents. For these users, there should be no loss in flexibility, as at-

home cryptography only impacts access patterns that are already forbidden by existing

policies.

An inherent tradeoff. We emphasise that our intention is to allow users to opt-in

to this extra layer of protection for the selected services that make sense for them (or

organizations they belong to); critically, these choices are highly personal to each user.

Users with chronic or acute illness, for instance, might require access to telemedicine

services at all times and cannot afford the privacy-flexibility trade-off that location-

based access provides. For other users, the choice to limit access to telemedicine

services to their home might be very natural. Consider, for example, a user with an
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at-home dialysis machine, which should only be able to communicate at home; any

communication outside the home would likely be an error. Moreover, the choice to

location-bind access to particular services might also change over time, based on what

the user plans to do when they leave their home and the specific threats that they

might expect along their journey. For example, a user planning to cross international

borders (where government agents generally have broader search powers) might want

to add an additional layer of security to their sensitive services, even if they do not

location-bind access to these services in their daily life.

4.4.2 At-Home Cryptographic Primitives.

We consider two cryptographic tasks that users might want to limit to their home:

at-home authentication and at-home encryption. While there are a large number

of other cryptographic tasks that one might want to consider limiting to the home,

authentication and encryption are sufficient for most practically important applications.

At-home authentication. At-home authentication allows users to authenticate to

services that they only want to be accessible from home. We imagine that these services

will most likely be online portals, social media accounts, or corporate VPNs. When

logging into these services, the user’s home becomes a second factor—somewhere

you are, in addition to the typical factors of something you know (passwords) or have

(hardware tokens). The protection offered by at-home authentication will most likely

be challenged by low-resource attackers who might try to impersonate the user after

stealing their mobile device. High-resource attackers, on the other hand, might be able

to breach the security measures on the online service itself, thereby circumventing

authentication altogether.
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To build at-home authentication from at-home cryptography, we select the crypto-

graphic functions used in everyday authentication workflows to be executed within

the at-home protocol, namely at-home signatures and at-home OTPs (looking ahead,

we will implement and evaluate at-home OTPs). For example, FIDO [Bar+20] and

client-authenticated TLS use signatures for authentication, and many online services

support time-based OTP, usually managed by an on-device app, to provide users with

their second authentication factor. These primitives can be replaced with their at-home

analogues (at-home signatures and at-home pseudorandom functions, respectively)

and then seamlessly used in the original workflows, achieving at-home authentication.

At-home encryption. At-home encryption allows users to secure files such that they

can only be decrypted when the user is at home. This is analogous to storing physical

files in a safe or lock-box in the home, as is common practice for financial documents,

birth certificates, or documents with sentimental value. At-home encryption facilitates

the creation of a digital equivalent to these. Importantly, it is possible to accomplish

this task robustly by storing encrypted files in the cloud—even if the encrypted files

are available globally, the decryption keys and therefore the corresponding plaintext

data are location-bound.

We note that the notion of a “digital safe” was contemplated in BurnBox [Tya+18].

Tyagi et al. proposed the notion of self-revocable encrypted cloud storage to protect

travelers against compelled decryption when crossing national borders. A digital at-

home safe was a critical component for recovering revoked files after the threat has

passed, and the user has returned home. The notion of at-home encryption captures this

application, and our realization of at-home encryption allows even non-technical users

to take advantage of the BurnBox system without purchasing dedicated hardware.

At-home encryption can be realized with either directly replacing the encryption
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and decryption with their at-home counterparts, or by designing at-home key derivation

function. When using the key derivation function, the user can query the key derivation

function on the identity of a particular files to recover the necessary key material to

either encrypt or decrypt the files directly. After interacting with these files, the key

material and the plaintext files can be securely deleted from the user’s device.

4.5 SocIoTy

In this section, we describe aspects of our SocIoTy construction, and how they relate to

the primitives of at-home cryptography discussed in 4.4. We discuss SocIoTy in terms

of its constituent components:

– Authorized device/authorized smartphone: This device has moderate computational

capacity and is carried by the user. We assume the device is honest while within the

home, but might be corrupted (e.g., stolen or forcibly removed from the user) upon

leaving the home. We assume the device supports effaceable storage, i.e., allows for

secure deletion of cryptographic secrets. Such functionality is common on modern

smartphones [ZJG22].

– Remote service: The remote service is an Internet-accessible service with which the

user wishes to interact, leveraging at-home cryptography. In the authentication

case, this is a service requiring login with two-factor authentication enabled. In the

encryption case, this is a cloud storage endpoint.

– IoT devices: The user selects IoT devices from their smart home to participate in

SocIoTy. For performance, the user selects those devices with sufficient hardware

and network capability to execute the protocol (i.e., excluding microcontroller-class

devices). Recall that that only a fraction of these devices may be compromised by the

adversary.
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For both at-home authentication and encryption, we need to bind at least one

irreplaceable step of the operations to the particular location. One way to do this is to

have one device in the home generate the key material necessary to do authentication

and encryption, and execute all of the necessary algorithms when contacted by the

smartphone. However, IoT devices are not sufficiently robust [SRB20; DV17] in terms

of security or computational capacity for this to be acceptable. Compromising a single

IoT device with weak security would lead to the compromise of location-binding and

the whole system: a scenario which is at least plausible, if not likely.

To mitigate the impact of IoT device compromise, we evaluate the standard cryp-

tographic functions used in authentication and encryption within an MPC protocol

distributed amongst multiple devices. Specifically, the secret key material is secret

shared among all N IoT devices, and only ever reconstructed within the MPC. Thus,

compromise of one device—or even a handful of devices—does not invalidate the security

guarantees of the system. Throughout this work, we use AES256 and MiMC [Alb+16]

as our symmetric cryptography primitives. AES256 is useful because of its maturity

and relative ease of implementation in arithmetic MPC protocols, and is a common

benchmark for the efficiency of MPC protocols [Kel+17; DK10]. We also study MiMC

because it is a relatively new MPC-friendly cipher with low multiplicative complexity;

similar ciphers have been explored in [Alb+15; AD18; Aly+20; Gra+21]. For AES256,

we represent our computation as an arithmetic circuit over GF(28) whereas for MiMC

we use GF(2128).

We now describe in depth how both our primitives can be realized according to a

generic MPC protocol Π that computes AES256 or MiMC, given shares of the key as

input and a message, provided by a single party as private input.

IoT device registration. In the setup phase, the authorized device wishes to enroll a
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new IoT device into the smart home and the protocol. The authorized device prompts

the smart device to create relevant key material, and the newly created public key

information is disseminated to all other devices in the smart home by the authorized

device. The new device is also given all public information of the other devices within

the smart home.

4.5.1 At-Home Authentication

To build an at-home authentication scheme using TOTP, we construct TOTPhome as

TOTPhome(ts, loc)=
{︃ TOTP(sk, ts) if loc=home

⊥ otherwise

Note that secret key sk is not present as a parameter to TOTPhome, as it is unavailable

to the user. Instead, sk is bound to the location parameter, which means that it is only

available if loc=home. Two questions remain: how should we instantiate TOTP, and

how do we generate codes from TOTP?

Instantiating TOTP. As discussed in 4.2, typical deployments use HMAC to instan-

tiate the underlying pseudorandom function PRF of TOTP; indeed, the OTP RFCs

explicitly assume that HMAC acts as a PRF in their security analyses [M’R+05; M’R+11].

Unfortunately, it is inefficient to evaluate HMAC within an MPC protocol, as it leverages

SHA-256 as a subroutine. Even the optimized SHA-256 circuit created for SCALE-

MAMBA has a multiplicative depth of over 1,500, and the gate-by-gate MPC protocols

we consider have round complexity proportional to the multiplicative depth of the

circuit being computed [Arc+].

We therefore propose replacing HMAC within TOTP protocol with functions that

have a simpler circuit representation. Block ciphers are typically modeled as pseu-

dorandom permutations (PRPs), but prior theoretical works [Hal+98; BI99; GGM18]
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Figure 4.3: SocIoTy for at-home authentication.
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have shown that truncating the output of a PRP results in a (secure) PRF. As de-

fined [M’R+11], TOTP truncates the output of its PRF to be 6 digits long. Thus, as long

as our PRP-to-PRF truncation results in enough bits to allow further truncation to 6

digits (PRF mod 106), we can use block ciphers as the PRF in TOTP.

With this in mind, we set PRF(sk, t)=Enc(sk, t)[: 24], where Enc is the symmetric key

encryption function of a block cipher like AES256 or MiMC, and the output is truncated

to be 24 bits long. Since 224 > 106, truncating the output to 24 bits will still allow for

OTPs that are at least 6 decimal digits, meeting the current interface for TOTP. Using

only 24 bits of PRF output introduces slightly more bias: the first 777,216 possible

6-digit OTPs have a probability of occurring roughly equal to 1.013×10−6, whereas

the rest occur with probability 0.95×10−6. However, given the ephemeral nature of

TOTP, this bias is unlikely to be exploitable. Also, since ts is a Unix timestamp (the

time-based component of TOTP), it is only 8 bytes long (modern Unix systems define

time_t as a 64-bit integer to avoid the Y2K38 problem), which means it will fit within

one block of an AES256 or MiMC execution, making a block cipher mode of operation

unnecessary (i.e., we only need “ECB mode”). We can then use this PRF as a drop-in

replacement for HMAC in TOTP.

Creating TOTPhome from TOTP. Now that we have defined our TOTP and its PRF,

we proceed to setting up TOTPhome, following the steps denoted in 4.3a. We assume

that the user of the authorized device would like to use at-home authentication for

connecting to a server that uses TOTP. To register a service, the authorized user first

obtains a key sk to be used with the service while at home. This key is then secret

shared as a (t, N) sharing to all N IoT devices that make up the smart home network.

Then, sk is effaced (securely deleted) from the authorized device. This initial setup

encodes the loc property of TOTPhome, binding the execution of the protocol to the home.
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The secret sk only exists on the IoT devices, which are fixed in the home; outside of

the home (i.e., loc ̸=home), sk is unavailable, and the protocol fundamentally cannot

execute, even under compelled access. Note that this setup phase is similar to the one

of standard TOTP—instead of a user downloading sk into a smartphone app or token,

they download it to their smart home.

Authenticating to a service with TOTPhome. Whenever a user requests authentica-

tion, the authorized device and IoT devices execute TOTPhome, as depicted in 4.3b. If

the user is at home, the authorized device contacts the home network with an authen-

tication request along with the current timestamp value t. The parties then run an

MPC protocol Π to execute the PRF of TOTP, with each party providing their share of

sk as input. The output O is reconstructed on the authorized device, which computes O

mod 106 as the 6-digit OTP. The server uses its copy of sk and PRF to compute the OTP,

and validate it against the user’s OTP. From the user and server’s perspective, this

interface—computing and verifying 6-digits OTPs—is the same as traditional RFC

6238 TOTP [M’R+11]; only the underlying PRF algorithm is changed to better support

SocIoTy and its at-home properties.

4.5.2 At-Home Encryption

We now proceed to building at-home encryption. Given a simple block cipher Enc:

Enchome(m, loc)=
{︃ Enc(sk,m) if loc=home

⊥ otherwise

and, with corresponding decryption algorithm Dec:

Dechome(m, loc)=
{︃ Dec(sk,m) if loc=home

⊥ otherwise

Again, sk is only available if loc=home.
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Encrypting a file with Enchome. Building Enchome from Enc requires adding location

as a precondition for executing an encryption. Our workflow for Enchome with SocIoTy

is shown in Figure 4.4.

When the user requests an encryption of a message m, it communicates this request

to all of the IoT devices. The IoT devices, in turn, generate random shares, which are

treated as shares of an encryption key sk. The IoT devices then run an MPC protocol

Π to encrypt m, returning the encrypted file cm. This encrypted file cm can be stored

on a cloud storage server, and all files m, cm are effaced from the user’s device after

execution. Decryption operates in reverse, with the authorized device downloading cm

from cloud storage, and running Dechome to retrieve m.

Public-key encryption. Optionally, public-key encryption can allow the Enc function

to be executed “in the clear” (outside any MPC) directly on the authorized device.

Decryption, however, will depend on a secret-shared corresponding private key.

Our protocol successfully binds the execution of Enchome and Dechome to the home

itself, as it requires the IoT devices that hold sk to participate. Compelled access of

the authorized device outside of the home does not lead to immediate decryption of the

user’s data, as the data is (1) only available in encrypted form on the cloud and (2) the

authorized device never sees sk.

A downside of this solution is that it requires the IoT devices to encrypt the entirety

of m. This may be reasonably efficient for smaller m, but as the size of m gets larger

(occupying several blocks), the overhead of computing the ciphertext may become

burdensome and lead to unacceptably low performance. Additionally, the IoT devices

must store state linear in the number of files encrypted by the home – the more files

they encrypt, the more they store.

Layering Enc and Enchome. To combat this problem and more effectively scale our
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solution to larger data, we propose to use the smart home essentially as a key store.

Instead of having the IoT devices encrypt an entire file, the authorized device generates

an skm′ for each file m′ it wishes to encrypt. Then, it submits skm′ to the IoT devices

for Enchome. The IoT devices use shares of a master key sk′ to encrypt skm′ , outputting

an encrypted key cskm′ . The authorized device then runs Enc on m using skm′ to get

an encrypted file cm′. The authorized device uploads the pair c = (cskm′ , cm′) to the

cloud storage, effacing m′, skm′ , cm′ , cskm′ afterwards. To decrypt, the authorized device

downloads the pair c, and uses Dechome (via the IoT devices) on cskm′ to retrieve skm′.

The device proceeds to decrypt cm′ using Dec and skm′ to retrieve the original file m′.

Layering encryption from the smartphone and encryption from the smart home has

important performance benefits. Smartphones typically have cryptographic accelera-

tors [ZJG22] which improve encryption and decryption speed. This reduces the burden

on the IoT devices, as they only have to encrypt skm′ , which is the size of two blocks (32

bytes). We can therefore run the block cipher in CTR mode twice to do encryption to get

the ciphertext. At the same time, this process maintains the location-binding property,

as decryption of cm is predicated on decrypting cskm′ , which in turn is dependent on

Dechome and the sk′ located on the IoT devices. We also eliminate the requirement to

store additional state on each IoT device, as they only need to hold shares of sk′, rather

than every sk for all m encrypted.

Enchome for self-revocable encryption. As previously discussed, our at-home encryp-

tion construction is well-suited to self-revocable encryption. Specifically, the “revocation

cache” – a store of secrets used to re-enable access to revoked files from the cloud – can

be implemented using Enchome. All of the backup key material used to recover after

revocation could be encrypted and stored using Enchome. At-home encryption therefore

allows non-expert users to apply a high-value security primitive like self-revocation
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Figure 4.4: SocIoTy for at-home encryption: request, generate, encrypt, send, efface.

to their cloud storage, while re-using hardware they already have. We also gain the

security property of location-binding on top of the guarantees of a system like Enchome.

4.5.3 Handling Device Churn

SocIoTy is designed to leverage existing IoT devices. While this means our solution can

be easily deployed, it also means that we must adapt to changing smart home conditions.

Users purchase devices for their intended use, not for at-home cryptography; a device’s

actual function in the smart home may conflict with their use as a member of SocIoTy.

This may lead to churn, where an IoT device enters or leaves the SocIoTy network

temporarily or permanently.

SocIoTy needs to handle two types of churn. The first type, “in-protocol churn,”

refers to events that cause an IoT device to stop participating in a SocIoTy operation

during the middle of MPC protocol execution. The second type, “out-of-protocol churn,”

refers to events where a device is removed from a smart home entirely, or where a
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device is newly installed in the smart home. We discuss our solutions to churn below,

and the security implications of our solution in §4.8.

In-protocol churn. IoT devices are designed to perform smart home tasks for their

users; SocIoTy uses these same devices to provide at-home cryptography. Ideally, when

running a SocIoTy computation, the IoT device is idle, and can devote its processing

and network capabilities entirely to the task at hand. However, this may not be strictly

the case; in the middle of computing TOTPhome or Enchome, one of the component devices

may have to respond to some event triggered by the smart home. For example, the user

could start interacting with the device (e.g., someone opens a door or flips a switch),

the IoT device might receive an important message from its associated cloud (e.g., a

firmware update or command), or an external event (e.g., the device detects motion and

starts recording).

These events may require some or all of the IoT device’s resources, which are already

constrained. To maintain utility in the smart home, the IoT device may be forced to

stop SocIoTy computation and focus its processing capability to smart home functions

instead. We refer to this as in-protocol churn, as a device is forced to leave in the middle

of executing the MPC protocol.

A naïve way of handling this would be to pause execution of the MPC until the IoT

device is idle once again. This may not be feasible, however, since the IoT device does not

necessarily know how long it will be servicing the event. For instance, after a motion

sensor is triggered, a camera could keep recording for several minutes. Since MPC

protocols operate in lock-step, the pause in execution would stall the entire protocol

until the camera is able to continue. Moreover, an IoT device cannot necessarily predict

the timing of this event, which means it and the other devices cannot easily “prepare”

for a pause in MPC computation.
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Instead, we utilize an MPC system that allows for dynamic participation—entering

and exiting—as a part of protocol execution. That way, a party (IoT device) that

must leave can do so without seriously impacting protocol execution. As discussed in

§4.2, several recent works have created models and protocols for MPC with dynamic

participation [Cho+21; Gen+21]. Choudhuri et al. [Cho+21] proposed the Fluid MPC

model, a model in which the execution of an MPC protocol is divided into discrete

stages known as “epochs” such that a different (potentially overlapping) set of parties,

called a “committee,” participates in each epoch. The authors then design a Fluid MPC

protocol—a variant of BGW [BGW88]—that achieves what they term maximal fluidity,

where each epoch has only one round of communication.

In practical terms, this means that a party p participating in committee c can drop

out of the protocol, securely transferring state to a new committee c+1 (not including

p) without interfering with the protocol’s progress or incurring notable overhead. The

mechanism for state transfer, termed πtrans in [Cho+21], is essentially re-sharing. Each

party in c generates a new sharing of their current shares, creating shares-of-shares.

These shares-of-shares are sent to all parties in c+1. The parties in c+1 (some of which

may have been in c) can then use these shares-of-shares to create regular protocol

shares to continue execution. This requires communication quadratic in the size of

both committees; to ensure security, a party p cannot simply send raw share data to a

different party p′, so we must involve all parties.

While the Fluid MPC model was originally designed for long-running, e.g. scientific

computation, the maximal fluidity property solves our in-protocol churn problem with

low overhead. Suppose an IoT device p receives a smart home event during the SocIoTy

computation. The device p selects a different IoT device p′, which has previously

indicated that it is available for execution, and instructs all other devices that, in the

next epoch, p′ will be replacing p. Then, all parties participate in the πtrans sub-protocol,
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and after O(n2) communication (with small n, only the size of the home IoT network),

p′ will have the relevant share data to continue the execution.

Because the protocol proposed in [Cho+21] achieves maximal fluidity, hand-offs incur

no additional rounds of communication. The new set of executing devices (including p′)

can continue computing, while p is free to handle some external event, all with minimal

overhead. Also, this extra communication is only required when a device wishes to exit

the network; otherwise, the protocol’s communication cost is the same as regular BGW.

We utilize this technique to handle in-protocol churn, and evaluate its performance in

§4.6.3.

Out-of-protocol churn. While SocIoTy assumes that devices are stationary in the

home, over time, what devices are in the home can change. Users purchase IoT devices

to add new functionality to their smart home. On the other hand, IoT devices can be

removed from the home, and even potentially sold. Often, both occur: an old IoT device,

potentially with user data, is replaced by a new model, yet to be configured. We wish to

maintain functionality of SocIoTy in the face of this out-of-protocol churn. This raises

similar issues as topics in device provisioning and de-provisioning explored in the IoT

literature [Kha+19; GG22].

First, we consider the device addition case. When the user adds a new device to

their smart home, they may want to configure the device as a SocIoTy node. The new

device has to gain access to long term state (i.e. key shares) in order to participate in

future MPC protocol executions. More formally, if there are N devices in the original

smart home the shares are parameterized by (t, N), for a threshold t. So, we must

convert the (t, N) shares into (t, N +1) shares to include the new device. We can do this

by re-sharing as described above, with each original device computing a new share for

every other device, including the new one.
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We also want to consider the device removal case, as the shares that a device holds

may be necessary for the rest of the network to continue. In this instance, we can

also apply re-sharing, since we are converting the (t, N) shares into (t, N −1) shares.

If we are replacing an old device with a new one, we can perform these operations in

sequence: the old device re-shares its secrets to the new set of smart home device and

the new device receives its shares as a part of the new smart home setup.

In a sense, this operation is a committee change in the Fluid MPC sense; the major

difference is that the change happens outside of an actual protocol execution. Unlike

in-protocol churn, we cannot immediately assume that another device is ready to take

over for the leaving device. This means that care must be taken to potentially adjust t

as devices come in and out. We discuss this further in §4.8.

Non-cooperative churn. The descriptions of churn above handle cases where churn

is cooperative, i.e., a device gracefully leaves the system and hands off state to the

other parties, either in or out of the protocol. However, IoT networks can undergo non-

cooperative churn, in which devices are forcefully removed from the network. Perhaps a

device undergoes a power failure during the protocol execution, or a device is unplugged

and thrown away without re-sharing anything. If non-cooperative churn occurs, and

there are still enough devices online to choose n such that less than or equal to t are

malicious, the protocol can continue but it must restart. However, if it is impossible to

get this property, then the underlying MPC cannot continue, and the system must stall

until more parties are online. We expect that smart home networks, for the most part,

will exhibit cooperative churn—devices leaving to service user requests, or devices

formally added or removed—far more often than non-cooperative churn. SocIoTy would

allow for a protocol to continue when it encounters this more common type of churn.

In this way, SocIoTy represents an improvement over the status quo, which does not
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Figure 4.5: Evaluation results on 50 runs of TOTPhome for in-protocol and out-of-protocol
churn on AES256 and MiMC.

support any type of churn at all.

4.5.4 Security Intuition

We now provide an intuitive overview of how our cryptosystem satisfies the property of

location-binding. A more detailed analysis can be found in §4.8.

Recall that there are three main attacker scenarios we are concerned about: a

remote attacker that compromises the authorized device, an unauthorized attacker

in the home that cannot compromise the authorized device, and a remote attacker

compromising the authorized device and some subset of devices in SocIoTy. A remote

attacker that only compromises the authorized device is incapable of communicating

with devices deployed with our protocol. Because the device does not maintain long-

term secrets aside from one to authenticate to the network, the attacker gains no

advantage in violating the security of the location-bound cryptography.

Because we use point-to-point secure channels with client authentication, a passive
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(monitoring) attacker on the network cannot learn anything about the input or output

of the MPC protocol. Further, by assumption adversaries can only compromise up to t

devices out of N, where the threshold t is equivalent to the threshold in Π. Thus, they

cannot recover sufficient secret shares to compute the encryption or authentication keys.

Nor can they force an incorrect output of the protocol if it is malicious-secure. A remote

attacker who gains access to both the authorized device and at least one IoT device

may attempt to impersonate the authorized user to the network. However, initiating

the protocol requires low-range authentication to an offline device, which a remote

attacker is incapable of interacting with. In each pertinent threat model, location

binding is preserved through the confidentiality of the MPC protocol, cryptographic

authentication, or physical proximity.

4.6 Evaluation

In this section we discuss our implementation of SocIoTy and our evaluation which

uses it to validate the feasibility and resilience properties of our design.

4.6.1 Implementation

Our SocIoTy implementation is divided into two components. In the first, we generate

circuits (MPC encodings of functions) for each at-home crytographic primitive. Then,

we provide these circuits to the second component to execute them.

We define our MPC circuits in a Python-based domain-specific language we devel-

oped. The output of this step is the circuit for a given file, which is a JSON object

containing the necessary information about the circuit (i.e., inputs, outputs, and gates),

along with layers, which track dependencies between gates, and references, which track

how many times a gate is used in the circuit. This extra information helps reduce both
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computation and communication in SocIoTy to occur only when necessary. An example

DSL circuit definition can be found in Listing 1, with its associated circuit in Listing 2.

Our circuit evaluator loads such a circuit for execution. It is written in Rust,

chosen for its memory-safety, strong support for asynchronous programming, and

(via LLVM) support for a common IoT architectures, including ARM and MIPS. The

implementation consists of a BGW MPC [BGW88] implementation with extensions

to support churn derived from Fluid MPC [Cho+21]. The underlying MPC requires

communication between nodes to compute the result of a multiplication (referred to

as πmult in [Cho+21]), as well as to hand-off shares to another party if exiting the

network (πtrans in [Cho+21]). An external function or library can invoke this hand-off

asynchronously, making our implementation suitable for use as a part of a larger

executable. Communication between device is handled via a gRPC [WZZ93] protocol

that transmits share data between parties. Evaluation uses layer and reference data

from the circuit to free data that is no longer needed in for the MPC computation; this

helps resource-constrained IoT devices conserve both memory and bandwidth.

Our implementation is an end-to-end realization of SocIoTy that is both modular and

extensible. As MPC research continue to evolve, we can generate new, more efficient

circuits; as faster numerical libraries are available, we can modify our evaluator to

take advantage of them. Our implementation may be of independent interest for

researchers investigating new directions in at-home cryptography, or for those building

other applications of MPC that involve churn.

x = inputs[0][0] # party 0, input share 0
y = inputs[1][0] # party 1, input share 0
output([(x * x) * (y + 4)]) # circuit output

Listing 1: DSL sample for a simple circuit.
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{"field": 8, "wires": 5, "refs": {"0": 2},
"parties": [0, 1], "inputs": {"0": [0], "1": [1]}, "outputs": [4],
"constants": ["4"], "gates": [{"op": "const add", "inputs": [1, 0],
"output": 3}, {"op": "mul", "inputs": [0, 0], "output": 2},
{"op": "mul", "inputs": [2, 3], "output": 4}], "layers": [0, 2]}

Listing 2: The associated circuit output for Listing 1.

4.6.2 Experimental Setup

With our evaluation, we wish to answer three primary questions. First, how practical

are our instantiations of at-home cryptography primitives? Next, how does our solution

scale with the number of participants in the network (and out-of-protocol churn)?

Finally, how does out solution scale with devices leaving and hand-off to other devices

(in-protocol churn)? To this end, we set up our experiments under a simulated smart

home. We configured nine Raspberry Pis, all connected via wireless LAN and running

Raspberry Pi OS 11 Lite. Six units were Raspberry Pi 3B+ devices, with 64-bit ARM

Cortex-A53 processors running at 1.4 GHz and 1 GB of RAM. The remaining three were

Raspberry Pi 2B devices, with 32-bit ARM Cortex-A7 processors running at 900 MHz

and 1 GB of RAM. The difference in capabilities represents the type of heterogeneous

hardware environments common in smart homes. Additionally, these units have been

used in prior works (e.g., [Kum+19]) to model smart home devices.

To evaluate both at-home authentication and at-home encryption, we developed

three appropriate circuits: TOTPAES256
home , TOTPMiMC

home , and Enchome. Each of these circuits

are loaded into our evaluator, and executed on the devices.

One execution of TOTPhome involves evaluating either AES256 or MiMC on one input

timestamp ts, outputting the first 3 bytes (24 bits) for use as an OTP. Note that one

execution of Enchome is actually (almost) identical to TOTPAES256
home , as it constitutes
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two AES256 circuit executions, generating two blocks of AES256. As such, we focus

on TOTPhome in our evaluation; Enchome can simply be extrapolated by doubling the

execution time of TOTPhome.

4.6.3 Results

Charts representing our results can be found in Figure 4.5. Associated summary

statistics can be found in §4.7.

Base primitives. To gauge the baseline performance of our system, we tested

TOTPhome in a (t = 2,n = 5) configuration. We discovered that, over 30 runs, TOTPAES256
home

took x̄ = 4.37 seconds (s = 0.77) to complete execution, where x̄ denotes the mean and s

denotes the standard deviation. TOTPMiMC
home , on the other hand, took x̄ = 2.63 seconds

(s = 0.47) to complete over 30 runs.

In-protocol churn. We want to assess how a node handing off to another node impacts

the execution time of the entire circuit. For these tests, we have i ∈ [1,2,3,4] nodes exit

the protocol after the first epoch, trigger a state hand-off. This covers the case where

execution begins, but a node realizes that it needs to spend time handling a smart home

event immediately after. We ran these tests on each instantiation of TOTPhome, and

provide our results in Figure 4.5a. Note that the increase in standard deviations for

n > 6 is likely due to the use of Raspberry Pi 2 devices for parties 7–9, which are lower

performance than the Pi 3 devices used for parties 1–6. We also ran a test to determine

if the point at which a party hands off matters (e.g., if handing off 100 layers into

the protocol was slower than 5 layers in), but we found that there were no noticeable

differences.

Out-of-protocol churn. To help us understand the impact of out-of-protocol churn on

the execution time of our solution, we also want to test different party sizes. We set
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t = ⌊n−1
2 ⌋ to maintain the highest threshold possible given the assumptions set forth in

our threat model (§4.3). Figure 4.5b shows the execution time distributions for this

test, with our original TOTPhome execution on (t = 2,n = 5) as a baseline. As the party

size increases, the median of each distribution appears to increase quadratically. This

follows from the underlying BGW protocol, which has communication complexity O(n2).

It also appears that, as above, the standard deviations for n > 6 is larger, likely for the

same reason as above (slower Pi 2 devices).

4.7 Summary Statistics

Summary statistics for the evaluation distributions can be found in Tables 4.1 and 4.2.

Table 4.1: Summary statistics for the distributions in Figure 4.5a.

Hand-offs TOTPAES256
home TOTPMiMC

home

0 x̄ = 4.37, s = 0.77 x̄ = 2.63, s = 0.47
1 x̄ = 4.35, s = 0.57 x̄ = 2.79, s = 0.67
2 x̄ = 4.04, s = 0.53 x̄ = 2.77, s = 0.52
3 x̄ = 4.25, s = 0.56 x̄ = 3.31, s = 1.88
4 x̄ = 5.06, s = 0.63 x̄ = 3.07, s = 0.59

Table 4.2: Summary statistics for the distributions in Figure 4.5b.

Parties TOTPAES256
home TOTPMiMC

home

(t = 2,n = 5) x̄ = 4.37, s = 0.77 x̄ = 2.63, s = 0.47
(t = 2,n = 6) x̄ = 4.70, s = 0.53 x̄ = 3.25, s = 0.50
(t = 3,n = 7) x̄ = 7.31, s = 2.10 x̄ = 6.74, s = 3.11
(t = 3,n = 8) x̄ = 8.30, s = 2.18 x̄ = 7.64, s = 3.48
(t = 4,n = 9) x̄ = 14.09, s = 3.63 x̄ = 6.59, s = 0.93

4.7.1 Discussion.

Our experimental results show that our prototype SocIoTy implementation is practical

for our use cases. TOTPMiMC
home clearly outperforms TOTPAES256

home , which makes sense, as
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MiMC is a cipher designed with MPC applications in mind, while AES256 was designed to

be more general-purpose. While MiMC is likely the appropriate choice for instantiating

SocIoTy, AES is also performant inside of the MPC, making it potentially suitable for

legacy applications.

In-protocol churn is handled without a large delay on the execution of the protocol,

both in terms of number of parties handing off, and point at which handoff is conducted.

As for out-of-protocol churn, as the party size increases from n = 5 to n = 9, we see an

increase from 4.37 seconds to 14.09 for AES, and 2.63 seconds to 6.59 for MiMC. RFC

6238 [M’R+11] recommends a time interval of 30 seconds per OTP and uses a sliding

window to decide which OTPs are acceptable. The TOTP RFC recommends that servers

allow OTPs from the previous two time intervals. As such, our results for all party

counts all fall within a single OTP interval. A user can thus request an OTP, have

SocIoTy generate it, and input it, all within the standard acceptability window.

SocIoTy is envisioned to support high-value online services and data. So. while

we aim for the best performance possible, the user should be able to tolerate waiting

for their most security sensitive tasks; in the worst case, a user could also attempt

to submit the next timestamp ts′ (instead of the current ts) to TOTPhome; by the time

TOTPhome evaluates, the OTP for ts′ will be valid. Future work that develops more

efficient maximally-fluid, dynamic MPC protocols or more efficient PRFs can be applied

to SocIoTy, netting us instant performance benefits.

These results can also be informative for a SocIoTy deployment. A device can use

the hand-off period length to decide if it wants to commit to a hand-off. While a device

cannot predict in general if servicing an event will stall a SocIoTy execution, it can

use estimates in its decision making. A user may choose a particular threshold and

party size to minimize their delay to an acceptable level while maintaining the highest
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possible federation of trust.

4.8 In-Depth Security Analysis

In this section we briefly recount our threat model and then discuss how SocIoTy ac-

counts for the various assumptions and security goals we have. Recall that we would

like to ensure location-binding, meaning that our system should be able to provide

at-home encryption and authentication even when a remote adversary compromises

some minority of devices or a physically close unauthorized adversary attempts to

subvert the system (see 4.3).

Consider an adversary that wishes to violate the location-binding property. Recall

that they can only compromise t of the N IoT devices in the smart home which means

at most t of the n parties participating in the MPC protocol Π can be compromised. By

the security of the MPC protocol, if Π terminates and produces output, the output is a

correct evaluation of the function over the inputs supplied and the input key shares

remain private. While a corrupted party might supply incorrect input shares to the

MPC, these incorrect values would simply cause reconstruction to fail. Intuitively, this

is because the input to the protocol is a valid secret sharing with threshold parameter

t and the “correct” input is fixed in the views of the honest parties. Thus when the

protocol Π is compiled to be malicious-secure, we prevent corrupted parties from forcing

the output to be incorrect, whether by deviating from the protocol or by supplying

incorrect input shares.

We securely realize point-to-point channels using TLS with client-side authentica-

tion. This prevents both a remote and local attacker from seeing messages between

other parties that could lead to key compromise. TLS also provides protection against

replay attacks. Both of these properties prevent a local attacker on the network from
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violating authorization since they can neither naively see MPC output nor impersonate

people on the network. Protecting against an attacker on the home network itself

but who does not have access to the authorized device is somewhat easier. Because

secure point-to-point channels exist between all parties, the authorized smartphone

may authenticate itself to all devices in the smart home. This makes it very difficult

for an unauthorized device to impersonate any device in the network, and thus privacy

is maintained. Note that this covers both malicious mobile devices that might be on

the network (e.g., a malicious house guest) and new IoT devices maliciously installed

in the home.

Having discussed IoT device compromise, we now analyze the impact of compromis-

ing an authorized device outside the home. Note that an authorized device outside the

home that has not compromised a member of SocIoTy cannot communicate over the

LAN, preventing it from running the previously described protocols. If an IoT device

is also compromised, the attacker will not be able to initiate the protocols because it

is not authenticated over NFC. Moreover, the authorized device securely deletes all

secret state upon completion of the provisioning phase and after each iteration of an

at-home cryptography application, meaning that access to the IoT devices is necessary

to perform at-home cryptography operations.

Recall the remote service is assumed to be honest. However, in the case of at-home

encryption, we can relax this assumption to semi-honest, as we intend to encrypt the

files stored on the server. This assumption allow us to realize at-home encryption using

only an IND-CPA secure encryption scheme. If a user wishes to protect themselves

against a malicious cloud, at-home encryption must be realized with a non-malleable

encryption system, such as an AEAD. Without an AEAD, an adversary will likely have

access to a decryption oracle that allows them to recover plaintext, a vulnerability

that has been demonstrated many times in the literature (e.g., [Can+03b; Mey+14;
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Gar+16b; BSY18; BZG20b; LGR21; BHP22; RH22]).

Churn. The security of in-protocol churn reduces to the security of πtrans, and we refer

to [Cho+21] for that analysis. The out-of-protocol churn case is slightly more subtle,

especially in IoT device removal. We assume that the user performs a factory reset

of their IoT device before selling or disposing of it, as is standard practice. However,

we do not assume that IoT devices have secure deletion capabilities. A malicious IoT

device purchaser could extract previously held memory, retrieving a share of the key.

This would in effect be compromising that device, and so without more than t shares,

this adversary would not be able to reconstruct any protocol secrets. Moreover, SocIoTy

renews its secrets whenever a new device is added to the smart home or a device is

removed, so corrupting many discarded devices over time will not allow the user to

slowly compromise secrets. As such, security is preserved during the device removal

case.

Out-of-protocol churn also introduces potential concerns around MPC thresholds.

We assume that the threshold is set at t = ⌊n−1
2 ⌋ where n < N (i.e., the number of SocIoTy

devices is less than the total number of devices in the smart home). As devices are

added and removed, we may need to adjust n. To maintain security against the same

fraction of malicious parties, t will need to be modified accordingly.

Achieving malicious security. While not considered thus far, we additionally note

that Π can be instantiated to be malicious-secure, meaning that even if an adversary

can completely compromise a device and force it to engage in arbitrary behavior, our

protocol is still secure. The protocol described in [Cho+21] achieves malicious security

by using a variant of the malicious security check proposed by Chida et al. [Chi+18],

which maintains a succinct amount of state per party that does not grow with the size

of the circuit nor add additional rounds to the MPC protocol. This works for MiMC,
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which operates in GF(2128); Unfortunately, AES256 computes over a small field (GF(28)),

so we cannot use their check directly. However, the end of Appendix B in [Cho+21]

presents a solution for operating over small fields: run the security check many times

in parallel to amplify security to the desired level. To achieve a security level of at least

60 bits (actual security equal to 64) we can execute that same check 8 times in parallel

for the same effect as using the 61 bit Mersenne field used in [Chi+18]. The cost for

doing this is a constant multiplicative overhead in the state that must be held by each

party during the protocol.

Non-goals. The MPC protocol Π that we use does not provide guaranteed output

delivery, a property which ensures that adversarial deviation (including aborting)

cannot prevent an honest party from learning the protocol output. As such, it is

possible for a remote attacker to mount a denial of service attack.

4.9 Related Work

We conclude this constructive contribution with consideration and comparison with

prior works with similar goals. We summarize our comparisons in Table 4.3, with

the following abbreviations: “Authn” notes if the work supports authentication, “Enc”

encryption, “Loc” if location can be cryptographically enforced, “HW” if the solution

requires novel/custom hardware to be used, and “Non-expert” if the solution specifically

designs around non-expert user requirements to facilitate adoption and practicality.

Location-based cryptography. Heuristics around location-based cryptography were

originally formed in the networking community, with a set of “geo-encryption” algo-

rithms [SD03; Qiu+07; FV12; AFAI07] that introduce location and time as additional

parameters to a cryptographic operation by using satellite data. More formal crypto-

graphic definitions were introduced by Chandran et al. [Cha+09] as “position-based
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Table 4.3: A comparison of related work with similar goals to those of SocIoTy.

Authn Enc Loc HW Non-expert
Geo-encryption [SD03; Qiu+07; FV12; AFAI07] ✗ ✓ ✓ ✓ ✗

Position-based crypto [Cha+09; Bro+17; Buh+11] ✓ ✓ ✓ N/A ✗

Time-specific encryption [Phu+19; PQ10; Kas+12] ✗ ✓ ✓ N/A ✗

HSMs [WG11; Hup+20; Han+19] ✓ ✗ ✓ ✗ ✗

Wearable devices [Cao+20; Chu14; SS18] ✓ ✗ ✗ ✗ ✓

Proximity measurement [Zha+17; ABS18] ✓ ✗ ✗ ✗ ✗

SocIoTy ✓ ✓ ✓ ✗ ✓

cryptography,” wherein they demonstrate the impossibility of verifying the physical

position (based on radio wave communications) of a number of colluding provers within

a space. Works since have explored the assumptions made by Chandran and their

implications in complexity theory [Bro+17] and in the quantum setting [Buh+11]. Fur-

ther, Phuong et al. developed a location-based encryption scheme in 2019 [Phu+19],

however, their scheme requires bilinear maps (as used in an attribute-based encryption

scheme) to achieve constant ciphertext size decryptable at arbitrary points within 2-D

or 3-D grids. Further, they rely on time-specific encryption [PQ10; Kas+12] to ensure

decryption only at particular points for a given ciphertext.

Hardware security modules (HSMs). Hardware security modules are separate,

dedicated computing devices that protect cryptographic keys by storing them and

mediating their use. They provide tamper-evidence or even tamper-resistance through

the use of specialized hardware [Kas18]. Once tampering is detected, the device may

stop functioning appropriately or delete its secret keys. HSMs are commonly used

to protect keys used by certificate authorities, banks, and cryptocurrency providers.

They are present within vehicles [WG11], operational technology [Hup+20], and cloud

applications [Han+19]. While providing good security guarantees on paper, historically

HSMs have been too expensive for average consumers at the highest security levels

and therefore have limited usability outside of large corporations [Kas18].
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Security via IoT devices. Most works in the literature that use the properties of

IoT for security focus on IoT devices themselves, either by enhancing their security or

facilitating easier authentication. Zhang et al. [Zha+17] describe an easier authentica-

tion for IoT devices by gesturing with a smartphone in close proximity to the devices.

Aman et al. [ABS18] used similar concept for the authentication of IoT devices by

accounting for physical location. These works do not provide location-binding for user

data, however. Some works do employ IoT characteristics for user authentication; in

particular, [Cao+20; Chu14; SS18] use wearable IoT devices as a second-factor for

authentication.
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Conclusion

Throughout the course of this work, we have proposed new approaches to analyzing the

security of cryptographic schemes, starting with encryption and extending to modern

cryptographic tools such as MPC. The unifying goal of these efforts was not only to

advance the field of attacks development and security analysis, but also to provide

usability and convenience for experts and non-expert practitioners alike to simultane-

ously expand or democratize access to these aspects of cryptographic knowledge. We

then continued this line of reasoning forward to develop a new secure protocol which at-

tempts to address practically-motivated needs for the end-user, similarly driven by the

guiding principle of accessibility which we realize by using commodity non-specialized

hardware to achieve security.

Our explorations elucidated a number of open problems, some of which we were

able to resolve. We briefly enumerate the remainder as a forward-looking conclusion to

this work.

1. In Chapters 2 and 3 we establish the need for further theoretical treatment of

the empirical advancements we make in applying approximated Max#SAT. Our

approaches necessarily weaken some theoretical guarantees of previously known

approximation algorithms, but in exchange are able to be practically feasible for
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meaningful formulae. A deeper analysis of the underlying complexities and costs

of our methods and heuristics would better inform extrapolations of our methods

as well as identify specific areas in which the SAT solving community could focus

for the mutual benefit of their work and ours.

2. In Chapter 3, having successfully assuaged the main limitation of the methods of

Chapter 2, we identify a horizon of new classes of problems our methods may be

applied to. We do not know the extent that this horizon could reach, however, we

note that it certainly at least includes a few promising areas. First, differential

privacy thresholding and security analysis; and second, evaluation and automated

exploitation of side channel attacks.

3. In Chapter 4, we present an exemplary secure protocol which bridges modern

cryptographic tools with end-user accessibility. Arguably this chapter’s primary

purpose is to suggest and reinforce the emerging line of research in which cryp-

tography experts attempt to not only expand the bounds of what is theoretically

possible, but also translate those advancements into systems and tools which

can affect organizations’ and individuals’ day to day lives. We hope that the

summation of this work can serve as a “proof by existence” to the possibility and

value of achieving both of those aims as we continue to advance the field.
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